Nikolay Koshkin, Leonid Shakun, Elena Korobeynikova, Seda Melikyants, Svetlana Strakhova, Vladislav Dragomiretsky, Andrey Ryabov, Sergey Terpan, Tatiana Golubovskaya
{"title":"Determination of the spacecraft’s spin axis orientation. Photometric patterns method","authors":"Nikolay Koshkin, Leonid Shakun, Elena Korobeynikova, Seda Melikyants, Svetlana Strakhova, Vladislav Dragomiretsky, Andrey Ryabov, Sergey Terpan, Tatiana Golubovskaya","doi":"10.1016/j.asr.2024.08.038","DOIUrl":null,"url":null,"abstract":"<div><div>Near-Earth space is becoming increasingly congested; the number of satellites in low Earth orbit (LEO), where there is already the greatest spatial density of objects (including man-made debris), is increasing rapidly. Knowing the status of non-cooperative space objects is one of the requirements of space situational awareness (SSA). Assessing the dynamic properties of large inactive satellites and rocket bodies, such as their rotation period and the spatial location of the rotation axis, is necessary to predict their orientation. This information is critical to both the success of active debris removal (ADR) missions and improved orbital propagation of objects in LEO. Monitoring the state of RSO is carried out by various means, including using ground-based optical sensors by collecting photometric data, processing it and analyzing light curves. This paper presents a new method for estimating the orientation of the RSO rotation axis in space. This method relies on structural analysis of RSO light curves and the search for similar fragments, called ”photometric patterns,” in observations obtained from one or several sites simultaneously or over a short period of time. The method does not require knowledge of the RSO shape and does not impose strict requirements on the quality of photometric observations.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008573","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Near-Earth space is becoming increasingly congested; the number of satellites in low Earth orbit (LEO), where there is already the greatest spatial density of objects (including man-made debris), is increasing rapidly. Knowing the status of non-cooperative space objects is one of the requirements of space situational awareness (SSA). Assessing the dynamic properties of large inactive satellites and rocket bodies, such as their rotation period and the spatial location of the rotation axis, is necessary to predict their orientation. This information is critical to both the success of active debris removal (ADR) missions and improved orbital propagation of objects in LEO. Monitoring the state of RSO is carried out by various means, including using ground-based optical sensors by collecting photometric data, processing it and analyzing light curves. This paper presents a new method for estimating the orientation of the RSO rotation axis in space. This method relies on structural analysis of RSO light curves and the search for similar fragments, called ”photometric patterns,” in observations obtained from one or several sites simultaneously or over a short period of time. The method does not require knowledge of the RSO shape and does not impose strict requirements on the quality of photometric observations.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.