{"title":"Synergistic effects of zinc oxide and iron oxide photoinitiators for whole spectrum utilization of UV–Vis light in photo-curable coatings","authors":"Qin Lu, Daiyong Ye","doi":"10.1007/s11998-024-00978-5","DOIUrl":null,"url":null,"abstract":"<p>In order to fully utilize the whole spectrum of UV–Vis light and eliminate the problems of organic photoinitiators in the photo-curable coatings, inorganic composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) were prepared and added into the photo-curable waterborne polyurethane acrylates. The inorganic composited photoinitiators utilized both the ultraviolet and visible light, which easily extended the light absorption range of each photoinitiator of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs. Fourier transform infrared spectroscopy, scanning electron microscopy, and ultraviolet–visible spectrophotometer were used to characterize the chemically composited particles, physically mixed particles, and their photo-curable coatings. Comparison with the pure waterborne polyurethane acrylates, better photoinitiation effect, light conversions, and mechanical properties of the photo-cured films were obtained when the chemically composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs were added with a molar ratio of 1:1. The photo-curing kinetics characterized by the UV–Vis and FTIR spectroscopy also proved their improved synergistic photoinitiation effects. This study demonstrated that the chemically composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs were a prospective solution to the complete utilization of illumination light during the conventional photo-curing processes.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"37 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11998-024-00978-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In order to fully utilize the whole spectrum of UV–Vis light and eliminate the problems of organic photoinitiators in the photo-curable coatings, inorganic composited photoinitiators of ZnO and Fe2O3 nanoparticles (NPs) were prepared and added into the photo-curable waterborne polyurethane acrylates. The inorganic composited photoinitiators utilized both the ultraviolet and visible light, which easily extended the light absorption range of each photoinitiator of ZnO and Fe2O3 NPs. Fourier transform infrared spectroscopy, scanning electron microscopy, and ultraviolet–visible spectrophotometer were used to characterize the chemically composited particles, physically mixed particles, and their photo-curable coatings. Comparison with the pure waterborne polyurethane acrylates, better photoinitiation effect, light conversions, and mechanical properties of the photo-cured films were obtained when the chemically composited photoinitiators of ZnO and Fe2O3 NPs were added with a molar ratio of 1:1. The photo-curing kinetics characterized by the UV–Vis and FTIR spectroscopy also proved their improved synergistic photoinitiation effects. This study demonstrated that the chemically composited photoinitiators of ZnO and Fe2O3 NPs were a prospective solution to the complete utilization of illumination light during the conventional photo-curing processes.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.