A self-healing epoxy coating realized by 2-chloromethylbenzimidazole loading MIL-88

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED
Zhenyu Rui, Xiumei Feng, Liben Zhou, Zhixun Shen, Lu Wan, Zhaolei Li
{"title":"A self-healing epoxy coating realized by 2-chloromethylbenzimidazole loading MIL-88","authors":"Zhenyu Rui, Xiumei Feng, Liben Zhou, Zhixun Shen, Lu Wan, Zhaolei Li","doi":"10.1007/s11998-024-00977-6","DOIUrl":null,"url":null,"abstract":"<p>Using nanocontainers filled with corrosion inhibitors is an efficient strategy to create a high-performance coating that protects metals from corrosion. In this paper, Metal organic framework (MIL-88) was synthesized and loaded with a sustainable and eco-friendly corrosion inhibitor, 2-chloromethylbenzimidazole (2-CBI). The 2-CBI@MIL-88 was used as a nanofiller to prepare an epoxy resin composite coating. The results showed that the corrosion inhibitors in 2-CBI@MIL-88 were released sustainably in an acidic 3.5 wt% NaCl solution. Notably, the |Z|<sub>0.01 Hz</sub> of the intact EP + 1% 2-CBI@MIL-88 was significantly higher than that of EP, while the |Z|<sub>0.01 Hz</sub> of scratched EP + 1% 2-CBI@MIL-88 increases upon immersion in a 3.5 wt% NaCl solution, demonstrating the excellent self-healing ability. Overall, incorporating 2-CBI@MIL-88 into epoxy coatings offers a promising approach for enhancing the corrosion resistance of steel structures.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11998-024-00977-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using nanocontainers filled with corrosion inhibitors is an efficient strategy to create a high-performance coating that protects metals from corrosion. In this paper, Metal organic framework (MIL-88) was synthesized and loaded with a sustainable and eco-friendly corrosion inhibitor, 2-chloromethylbenzimidazole (2-CBI). The 2-CBI@MIL-88 was used as a nanofiller to prepare an epoxy resin composite coating. The results showed that the corrosion inhibitors in 2-CBI@MIL-88 were released sustainably in an acidic 3.5 wt% NaCl solution. Notably, the |Z|0.01 Hz of the intact EP + 1% 2-CBI@MIL-88 was significantly higher than that of EP, while the |Z|0.01 Hz of scratched EP + 1% 2-CBI@MIL-88 increases upon immersion in a 3.5 wt% NaCl solution, demonstrating the excellent self-healing ability. Overall, incorporating 2-CBI@MIL-88 into epoxy coatings offers a promising approach for enhancing the corrosion resistance of steel structures.

Abstract Image

通过添加 2-氯甲基苯并咪唑 MIL-88 实现的自愈合环氧涂层
使用填充有腐蚀抑制剂的纳米容器是一种有效的策略,可以制造出保护金属免受腐蚀的高性能涂层。本文合成了金属有机框架 (MIL-88),并在其中添加了一种可持续的环保型缓蚀剂--2-氯甲基苯并咪唑 (2-CBI)。2-CBI@MIL-88 被用作纳米填料来制备环氧树脂复合涂层。结果表明,2-CBI@MIL-88 中的缓蚀剂可在 3.5 wt% 的酸性氯化钠溶液中持续释放。值得注意的是,完整 EP + 1% 2-CBI@MIL-88 的|Z|0.01 Hz 明显高于 EP,而划痕 EP + 1% 2-CBI@MIL-88 的|Z|0.01 Hz 在 3.5 wt% 的 NaCl 溶液中浸泡后会增加,这表明了其优异的自修复能力。总之,在环氧涂层中加入 2-CBI@MIL-88 为提高钢结构的耐腐蚀性提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信