Role of the encapsulation strategy of smart containers on corrosion resistance and self-healing performance of micro-arc oxidation coating

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED
Yuezhong Zhang, Xiaoting Chen, Yunfei Qiao, Xiaofeng Ding, Shaohua Zhang, Baosheng Liu
{"title":"Role of the encapsulation strategy of smart containers on corrosion resistance and self-healing performance of micro-arc oxidation coating","authors":"Yuezhong Zhang,&nbsp;Xiaoting Chen,&nbsp;Yunfei Qiao,&nbsp;Xiaofeng Ding,&nbsp;Shaohua Zhang,&nbsp;Baosheng Liu","doi":"10.1007/s11998-024-00981-w","DOIUrl":null,"url":null,"abstract":"<div><p>Encapsulating smart nano-containers loaded with corrosion inhibitors into coating is a promising approach to functionalize micro-arc oxidation (MAO) coating. The encapsulation strategy of smart containers has a great influence on the microstructure, corrosion resistance and self-healing performance of the smart MAO coating. In order to provide a comprehensive understanding, two kinds of MAO coating encapsulated smart containers (HNT-8HQ), MAO-HNT-8HQ (1S) coating (one-step preparation in an MAO electrolyte containing smart nano-containers) and MAO + HNT-8HQ (2S) coating (pre-prepared MAO coating through an embedding nano-container processing) were prepared on AZ31 magnesium alloy. The incorporated HNT-8HQ in electrolyte can effectively reduce coating porosity and increase coating thickness. Both smart MAO coatings show considerable improvements in the corrosion resistance and a certain self-healing capacity. The post-embedding treated coating (MAO + HNT-8HQ (2S)) has better long-term durability and self-healing performance than one-step preparation coating (MAO-HNT-8HQ (1S)). The low-frequency impedance modulus (|Z|<sub>ƒ=0.01 Hz</sub>) of MAO + HNT-8HQ (2S) coating is 1.33 times that of MAO-HNT-8HQ (1S) coating after immersion in 3.5 wt% NaCl solution for 168 h. The MAO + HNT-8HQ (2S) coating has higher impedance values than MAO-HNT-8HQ (1S) coating during the entire self-healing process. The low-frequency impedance modulus of scratched MAO + HNT-8HQ (2S) coating is 3.33 times that of scratch MAO-HNT-8HQ (1S) coating after a 72 h self-healing process.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 1","pages":"351 - 367"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00981-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Encapsulating smart nano-containers loaded with corrosion inhibitors into coating is a promising approach to functionalize micro-arc oxidation (MAO) coating. The encapsulation strategy of smart containers has a great influence on the microstructure, corrosion resistance and self-healing performance of the smart MAO coating. In order to provide a comprehensive understanding, two kinds of MAO coating encapsulated smart containers (HNT-8HQ), MAO-HNT-8HQ (1S) coating (one-step preparation in an MAO electrolyte containing smart nano-containers) and MAO + HNT-8HQ (2S) coating (pre-prepared MAO coating through an embedding nano-container processing) were prepared on AZ31 magnesium alloy. The incorporated HNT-8HQ in electrolyte can effectively reduce coating porosity and increase coating thickness. Both smart MAO coatings show considerable improvements in the corrosion resistance and a certain self-healing capacity. The post-embedding treated coating (MAO + HNT-8HQ (2S)) has better long-term durability and self-healing performance than one-step preparation coating (MAO-HNT-8HQ (1S)). The low-frequency impedance modulus (|Z|ƒ=0.01 Hz) of MAO + HNT-8HQ (2S) coating is 1.33 times that of MAO-HNT-8HQ (1S) coating after immersion in 3.5 wt% NaCl solution for 168 h. The MAO + HNT-8HQ (2S) coating has higher impedance values than MAO-HNT-8HQ (1S) coating during the entire self-healing process. The low-frequency impedance modulus of scratched MAO + HNT-8HQ (2S) coating is 3.33 times that of scratch MAO-HNT-8HQ (1S) coating after a 72 h self-healing process.

Abstract Image

智能容器的封装策略对微弧氧化涂层耐腐蚀性和自修复性能的影响
将装有缓蚀剂的智能纳米容器封装到涂层中是一种很有前景的微弧氧化(MAO)涂层功能化方法。智能容器的封装策略对智能 MAO 涂层的微观结构、耐腐蚀性和自修复性能有很大影响。为了全面了解这一问题,我们在 AZ31 镁合金上制备了两种封装了智能容器(HNT-8HQ)的 MAO 涂层:MAO-HNT-8HQ (1S) 涂层(在含有智能纳米容器的 MAO 电解液中一步制备)和 MAO + HNT-8HQ (2S) 涂层(通过嵌入纳米容器加工预先制备 MAO 涂层)。电解液中加入的 HNT-8HQ 能有效降低涂层孔隙率并增加涂层厚度。两种智能 MAO 涂层的耐腐蚀性能都得到了显著改善,并具有一定的自修复能力。与一步法制备的涂层(MAO-HNT-8HQ (1S))相比,经过包埋处理的涂层(MAO + HNT-8HQ (2S))具有更好的长期耐久性和自修复性能。在 3.5 wt% 的 NaCl 溶液中浸泡 168 小时后,MAO + HNT-8HQ (2S) 涂层的低频阻抗模量(|Z|ƒ=0.01 Hz)是 MAO-HNT-8HQ (1S) 涂层的 1.33 倍。划痕 MAO + HNT-8HQ (2S) 涂层在 72 小时自愈合过程后的低频阻抗模量是划痕 MAO-HNT-8HQ (1S) 涂层的 3.33 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信