Similarity-based ranking of videos from fixed-size one-dimensional video signature

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hugo Mendes, Paulo Seixas
{"title":"Similarity-based ranking of videos from fixed-size one-dimensional video signature","authors":"Hugo Mendes, Paulo Seixas","doi":"10.1007/s10791-024-09459-0","DOIUrl":null,"url":null,"abstract":"<p>The amount of information is multiplying, one of the popular and widely used formats is short videos. Therefore, maintaining the copyright protection of this information, preventing it from being disclosed without authorization, is a challenge. This work presents a way to rank a set of short videos based on a video profile similarity metric, finding a set of reference videos, using a self-supervised method, without the need for human tagging. The self-supervised method uses a search based on a Genetic Algorithm, of a subgroup of the most similar videos. Similarities are calculated using the SMAPE metric on video signatures vectors, generated with a fixed size, using Structural Tensor, maximum sub matrix and T-SNE.</p>","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"40 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-024-09459-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The amount of information is multiplying, one of the popular and widely used formats is short videos. Therefore, maintaining the copyright protection of this information, preventing it from being disclosed without authorization, is a challenge. This work presents a way to rank a set of short videos based on a video profile similarity metric, finding a set of reference videos, using a self-supervised method, without the need for human tagging. The self-supervised method uses a search based on a Genetic Algorithm, of a subgroup of the most similar videos. Similarities are calculated using the SMAPE metric on video signatures vectors, generated with a fixed size, using Structural Tensor, maximum sub matrix and T-SNE.

Abstract Image

基于相似性的视频排序,源自固定大小的一维视频特征
信息量正在成倍增长,短视频是其中一种流行和广泛使用的格式。因此,如何维护这些信息的版权保护,防止其在未经授权的情况下被泄露,是一项挑战。本作品提出了一种基于视频简介相似度指标的短视频排序方法,利用自监督方法找到一组参考视频,无需人工标记。这种自我监督方法采用基于遗传算法的搜索方法,搜索最相似视频的子群。使用结构张量、最大子矩阵和 T-SNE 对以固定大小生成的视频特征向量使用 SMAPE 指标计算相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Retrieval Journal
Information Retrieval Journal 工程技术-计算机:信息系统
CiteScore
6.20
自引率
0.00%
发文量
17
审稿时长
13.5 months
期刊介绍: The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信