{"title":"Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation.","authors":"Josefin Ahnström,Anastasis Petri,James Tb Crawley","doi":"10.1097/moh.0000000000000838","DOIUrl":null,"url":null,"abstract":"PURPOSE OF REVIEW\r\nIn humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control.\r\n\r\nRECENT FINDINGS\r\nRecent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk.\r\n\r\nSUMMARY\r\nTFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/moh.0000000000000838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE OF REVIEW
In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control.
RECENT FINDINGS
Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk.
SUMMARY
TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.