MoSe2 nanoflakes for zinc ion storage

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
AIP Advances Pub Date : 2024-09-11 DOI:10.1063/5.0226948
Renzhi Jiang, Yuncheng Cai
{"title":"MoSe2 nanoflakes for zinc ion storage","authors":"Renzhi Jiang, Yuncheng Cai","doi":"10.1063/5.0226948","DOIUrl":null,"url":null,"abstract":"Zinc-ion batteries (ZIBs) have become a highly desirable energy storage technology due to their significant advantages, such as low cost and high safety; however, the limitation of cathode materials has become a major factor restricting the development of ZIBs. Here, molybdenum diselenide (MoSe2) nanoflakes were investigated for the first time as a novel cathode for ZIBs. The unique two-dimensional (2D) layered structure of MoSe2 provides convenient channels and multiple active sites for zinc (Zn) ion diffusion. MoSe2 showed a specific capacity of 30.1 mA h/g at 0.1 A/g as well as almost no capacity decay at 1.0 A/g after 1500 cycles. Further, the Zn–MoSe2 coin cell successfully excited a light-emitting diode, showing good application prospects. Moreover, there was almost no aging of the battery after cycling, thus indicating satisfactory application potential. This work broadens the application of 2D materials in ZIBs.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0226948","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion batteries (ZIBs) have become a highly desirable energy storage technology due to their significant advantages, such as low cost and high safety; however, the limitation of cathode materials has become a major factor restricting the development of ZIBs. Here, molybdenum diselenide (MoSe2) nanoflakes were investigated for the first time as a novel cathode for ZIBs. The unique two-dimensional (2D) layered structure of MoSe2 provides convenient channels and multiple active sites for zinc (Zn) ion diffusion. MoSe2 showed a specific capacity of 30.1 mA h/g at 0.1 A/g as well as almost no capacity decay at 1.0 A/g after 1500 cycles. Further, the Zn–MoSe2 coin cell successfully excited a light-emitting diode, showing good application prospects. Moreover, there was almost no aging of the battery after cycling, thus indicating satisfactory application potential. This work broadens the application of 2D materials in ZIBs.
用于锌离子存储的 MoSe2 纳米薄片
锌离子电池(ZIB)具有成本低、安全性高等显著优势,已成为一种非常理想的储能技术;然而,阴极材料的局限性已成为制约锌离子电池发展的一个主要因素。本文首次将二硒化钼(MoSe2)纳米片作为新型 ZIB 阴极材料进行了研究。MoSe2 独特的二维(2D)层状结构为锌(Zn)离子扩散提供了便捷的通道和多个活性位点。MoSe2 在 0.1 A/g 条件下的比容量为 30.1 mA h/g,在 1.0 A/g 条件下循环 1500 次后容量几乎没有衰减。此外,Zn-MoSe2 纽扣电池还成功激发了一个发光二极管,显示出良好的应用前景。此外,电池在循环后几乎没有老化,这表明其具有令人满意的应用潜力。这项研究拓宽了二维材料在 ZIB 中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信