A. Salman Durmuslar, E. B. Al, H. M. Althib, M. E. Mora-Ramos, F. Ungan
{"title":"Effects of doping concentrations and position-dependent mass on the nonlinear optical properties of asymmetric double delta-doped GaAs quantum wells","authors":"A. Salman Durmuslar, E. B. Al, H. M. Althib, M. E. Mora-Ramos, F. Ungan","doi":"10.1007/s00340-024-08315-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the electronic and optical properties of an asymmetric double delta doped quantum wells structure formed within GaAs. The electronic structure of system is obtained within effective mass and envelope wave function approximations. Optical responses are calculated in the framework of the compact density matrix approach. The roles of distance between wells, varying one well electron concentration, as well as length parameter of position-dependent mass, on the total optical absorption coefficients and the relative refractive index changes are investigated. The findings of this study indicate that prominence of optical coefficients occurs at higher energies for position-dependent mass, compared to constant mass case. Augmented right well electron concentrations lead to blue-shifts on the optical properties not only with constant mass but also with position-dependent mass. However, the increase in the wells’ separation results the absorption peaks to move towards lower energies.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08315-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the electronic and optical properties of an asymmetric double delta doped quantum wells structure formed within GaAs. The electronic structure of system is obtained within effective mass and envelope wave function approximations. Optical responses are calculated in the framework of the compact density matrix approach. The roles of distance between wells, varying one well electron concentration, as well as length parameter of position-dependent mass, on the total optical absorption coefficients and the relative refractive index changes are investigated. The findings of this study indicate that prominence of optical coefficients occurs at higher energies for position-dependent mass, compared to constant mass case. Augmented right well electron concentrations lead to blue-shifts on the optical properties not only with constant mass but also with position-dependent mass. However, the increase in the wells’ separation results the absorption peaks to move towards lower energies.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.