{"title":"Compressional and shear wave velocities of Fe-bearing silicate post-perovskite in Earth’s lowermost mantle","authors":"Jing Yang, Suyu Fu, Jin Liu, Jung-Fu Lin","doi":"10.1016/j.gsf.2024.101915","DOIUrl":null,"url":null,"abstract":"The bridgmanite (Bgm) to silicate post-perovskite (PPv) phase transition is believed to be the main cause for the distinct seismic features observed in the D'' layer, the lowermost region of the Earth’s mantle. However, the transition depth and elasticity of the PPv phase have been highly debated, as the chemical complexity within the D'' layer can largely affect the Bgm-PPv transition pressure and the associated velocity contrast. Experimental measurements of sound velocities for PPv with different chemical compositions under relevant lowermost-mantle conditions are essential but remain limited. In this study, we have reliably measured both compressional wave velocity (), shear wave velocity (), and density, for two Fe-bearing PPv compositions [(MgFe)SiO and (MgFe)SiO] at lowermost mantle pressures using Impulsive Stimulated Light Scattering (ISS), Brillouin Light Scattering (BLS), and X-ray Diffraction (XRD) in diamond anvil cells. Our results indicate that the velocities of Fe-bearing PPv at 120 GPa can be described by the following relationships: (km/s) = 7.65–2.8 and (km/s) = 14.11–3.8, where represents mole fraction of the Fe content. The variations in the Fe content of PPv may provide one of the explanations for the seismic lateral variations observed at the Earth’s core mantle boundary. By comparing our results with the high-pressure velocities of Bgm, our velocity model suggests significant discontinuities across the Bgm-PPv transition, characterized by a reduction in both and , and an increase in . These findings highlight the importance of considering the influence of chemical composition, particularly Fe content which could vary significantly at the D'' region, on the seismic properties of the PPv phase. The observed velocity contrasts across the Bgm-PPv transition may contribute to the complex seismic signatures observed in the D'' layer, underscoring the potential role of this phase transition in interpreting the seismic features of the lowermost mantle region.","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"11 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gsf.2024.101915","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The bridgmanite (Bgm) to silicate post-perovskite (PPv) phase transition is believed to be the main cause for the distinct seismic features observed in the D'' layer, the lowermost region of the Earth’s mantle. However, the transition depth and elasticity of the PPv phase have been highly debated, as the chemical complexity within the D'' layer can largely affect the Bgm-PPv transition pressure and the associated velocity contrast. Experimental measurements of sound velocities for PPv with different chemical compositions under relevant lowermost-mantle conditions are essential but remain limited. In this study, we have reliably measured both compressional wave velocity (), shear wave velocity (), and density, for two Fe-bearing PPv compositions [(MgFe)SiO and (MgFe)SiO] at lowermost mantle pressures using Impulsive Stimulated Light Scattering (ISS), Brillouin Light Scattering (BLS), and X-ray Diffraction (XRD) in diamond anvil cells. Our results indicate that the velocities of Fe-bearing PPv at 120 GPa can be described by the following relationships: (km/s) = 7.65–2.8 and (km/s) = 14.11–3.8, where represents mole fraction of the Fe content. The variations in the Fe content of PPv may provide one of the explanations for the seismic lateral variations observed at the Earth’s core mantle boundary. By comparing our results with the high-pressure velocities of Bgm, our velocity model suggests significant discontinuities across the Bgm-PPv transition, characterized by a reduction in both and , and an increase in . These findings highlight the importance of considering the influence of chemical composition, particularly Fe content which could vary significantly at the D'' region, on the seismic properties of the PPv phase. The observed velocity contrasts across the Bgm-PPv transition may contribute to the complex seismic signatures observed in the D'' layer, underscoring the potential role of this phase transition in interpreting the seismic features of the lowermost mantle region.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.