{"title":"The Hugoniot curve and sound velocity of forsterite to 1200 GPa","authors":"Jian Song, Liang Sun, Huan Zhang, Xiaoxi Duan, Zanyang Guan, Lu Zhang, Xiaokang Feng, Weiming Yang, Hao Liu, Mengsheng Yang, Yulong Li, Dong Yang, Zhebin Wang, Jiamin Yang, Wenge Yang, Toshimori Sekine, Youjun Zhang, Zongqing Zhao, Zhongqing Wu","doi":"10.1016/j.gsf.2024.101917","DOIUrl":null,"url":null,"abstract":"The comprehension of the composition and physical state of the deep interiors of large planets, as well as the impact events pertinent to planetary formation and evolution, necessitates an understanding of the properties of planetary materials under extreme conditions. Forsterite (MgSiO), a significant geological mineral, has not been fully characterized in terms of its behavior under shock compression due to a lack of consensus among previous experiments and simulations aimed at determining its Hugoniot, as well as the absence of knowledge of sound velocity at high pressures, a critical parameter indicative of phase transformation and melting.","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"31 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gsf.2024.101917","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The comprehension of the composition and physical state of the deep interiors of large planets, as well as the impact events pertinent to planetary formation and evolution, necessitates an understanding of the properties of planetary materials under extreme conditions. Forsterite (MgSiO), a significant geological mineral, has not been fully characterized in terms of its behavior under shock compression due to a lack of consensus among previous experiments and simulations aimed at determining its Hugoniot, as well as the absence of knowledge of sound velocity at high pressures, a critical parameter indicative of phase transformation and melting.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.