Johann Ostmeyer, Tahereh Nematiaram, Alessandro Troisi, Pavel Buividovich
{"title":"First-principles quantum Monte Carlo study of charge-carrier mobility in organic molecular semiconductors","authors":"Johann Ostmeyer, Tahereh Nematiaram, Alessandro Troisi, Pavel Buividovich","doi":"10.1103/physrevapplied.22.l031004","DOIUrl":null,"url":null,"abstract":"We present a first-principles numerical study of charge transport in a realistic two-dimensional tight-binding model of organic molecular semiconductors. We use the hybrid Monte Carlo (HMC) algorithm to simulate the full quantum dynamics of phonons and either single or multiple charge carriers without any tunable parameters. We introduce a number of algorithmic improvements, including efficient Metropolis updates for phonon fields based on analytical insights, which lead to negligible autocorrelation times and allow sub-per-mille precisions to be reached at a low computational cost of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></mrow><mo></mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math> CPU hours. Our simulations produce charge-mobility estimates that are in good agreement with experiments and that also justify the phenomenological transient localization approach.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"59 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.l031004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a first-principles numerical study of charge transport in a realistic two-dimensional tight-binding model of organic molecular semiconductors. We use the hybrid Monte Carlo (HMC) algorithm to simulate the full quantum dynamics of phonons and either single or multiple charge carriers without any tunable parameters. We introduce a number of algorithmic improvements, including efficient Metropolis updates for phonon fields based on analytical insights, which lead to negligible autocorrelation times and allow sub-per-mille precisions to be reached at a low computational cost of CPU hours. Our simulations produce charge-mobility estimates that are in good agreement with experiments and that also justify the phenomenological transient localization approach.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.