{"title":"Structural, Optoelectronic, Magnetic, and Thermoelectric Properties of Titanium Ruthenate Quadruple Perovskites: A First Principle Investigation","authors":"Laila Almanqur, Shahid Mehmood","doi":"10.1007/s10948-024-06831-5","DOIUrl":null,"url":null,"abstract":"<div><p>Crystal structure, opto-electronic, magnetic, and thermoelectric properties of quadruple perovskites ACu<sub>3</sub>Ti<sub>2</sub>Ru<sub>2</sub>O<sub>12</sub> (A = Ca, Sr, and Ba) are explored by the utilization of generalized gradient approximation (GGA) and GGA with Hubbard U in the framework of density functional theory (DFT). The optimized crystal structures and geometrical appearance are found compatible with the experiments. Cohesive energies (− 35.92 to − 39.41 Ry) and enthalpy of formation (− 1.79 to − 1.97 Ry) describe the stability of these compounds. Electrical resistivity and AFM phase profiles of electronic bands of these perovskites indicate that they are semiconductors with band gap ranging from 0.50 to 0.17 eV accordingly. In these compounds, the bandgap arise between the Ti and Ru <i>d</i> states electron and are direct band gap materials at <i>R</i> symmetry. They are active in the infrared part of the electromagnetic spectrum, according to their optical characteristics; this makes them shields for UV radiation and potential candidate for security monitoring devices. Thermoelectric properties of these compounds demonstrate that they are suitable candidate for thermoelectric generation. All of these perovskites are antiferromagnetic (AFM) which can be evident from their magnetic susceptibility and stable magnetic phase energies. As these perovskites are AFM semiconductor, due to this property, these perovskites could be used in magnetic cloaking and high-speed switching devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 11-12","pages":"1859 - 1870"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06831-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal structure, opto-electronic, magnetic, and thermoelectric properties of quadruple perovskites ACu3Ti2Ru2O12 (A = Ca, Sr, and Ba) are explored by the utilization of generalized gradient approximation (GGA) and GGA with Hubbard U in the framework of density functional theory (DFT). The optimized crystal structures and geometrical appearance are found compatible with the experiments. Cohesive energies (− 35.92 to − 39.41 Ry) and enthalpy of formation (− 1.79 to − 1.97 Ry) describe the stability of these compounds. Electrical resistivity and AFM phase profiles of electronic bands of these perovskites indicate that they are semiconductors with band gap ranging from 0.50 to 0.17 eV accordingly. In these compounds, the bandgap arise between the Ti and Ru d states electron and are direct band gap materials at R symmetry. They are active in the infrared part of the electromagnetic spectrum, according to their optical characteristics; this makes them shields for UV radiation and potential candidate for security monitoring devices. Thermoelectric properties of these compounds demonstrate that they are suitable candidate for thermoelectric generation. All of these perovskites are antiferromagnetic (AFM) which can be evident from their magnetic susceptibility and stable magnetic phase energies. As these perovskites are AFM semiconductor, due to this property, these perovskites could be used in magnetic cloaking and high-speed switching devices.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.