Behaviour of Dissimilar Welded Connections of Mild Carbon (S235), Stainless (1.4404), and High-Strength (S690) Steels under Monotonic and Cyclic Loading
IF 2.6 3区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Behaviour of Dissimilar Welded Connections of Mild Carbon (S235), Stainless (1.4404), and High-Strength (S690) Steels under Monotonic and Cyclic Loading","authors":"Anna Ene, Aurel Stratan, Ioan Both","doi":"10.3390/met14090989","DOIUrl":null,"url":null,"abstract":"In the context of an increasing interest in the use of high-performance steels in the construction industry due to their superior mechanical properties, understanding the behaviour and assessing the performance of dissimilar welded connections becomes essential. When several steel grades are adopted for fabrication of the same dissipative element, dissimilar welded connections have a decisive importance regarding the seismic performance of the structural member. This paper presents the experimental results of monotonic and low-cycle fatigue (LCF) tests on dissimilar welded connections. The welded connections are designed to reproduce the loading state that occurs between the web and the flanges of dissipative links in an eccentrically braced frame, and represent combinations of S235 mild carbon steel, 1.4404 austenitic stainless steel, and S690 high-strength steel. The obtained experimental results provide a better understanding of the behaviour of dissimilar welded connections through the evaluation of their strength, ductility, and failure mechanisms, providing a basis for finite element (FE) models’ calibration for further numerical simulations. This study contributes to the evaluation of the feasibility of connections between dissimilar steels in seismic-resistant steel structures.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14090989","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of an increasing interest in the use of high-performance steels in the construction industry due to their superior mechanical properties, understanding the behaviour and assessing the performance of dissimilar welded connections becomes essential. When several steel grades are adopted for fabrication of the same dissipative element, dissimilar welded connections have a decisive importance regarding the seismic performance of the structural member. This paper presents the experimental results of monotonic and low-cycle fatigue (LCF) tests on dissimilar welded connections. The welded connections are designed to reproduce the loading state that occurs between the web and the flanges of dissipative links in an eccentrically braced frame, and represent combinations of S235 mild carbon steel, 1.4404 austenitic stainless steel, and S690 high-strength steel. The obtained experimental results provide a better understanding of the behaviour of dissimilar welded connections through the evaluation of their strength, ductility, and failure mechanisms, providing a basis for finite element (FE) models’ calibration for further numerical simulations. This study contributes to the evaluation of the feasibility of connections between dissimilar steels in seismic-resistant steel structures.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.