The Effect of Multiple Solder Reflows on the Formation of Cu6Sn5 Intermetallics and the Decomposition of SnAg3.0Cu0.5 Solder Joints in the Framework of Rework and Reuse of MLCC Components
IF 2.6 3区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"The Effect of Multiple Solder Reflows on the Formation of Cu6Sn5 Intermetallics and the Decomposition of SnAg3.0Cu0.5 Solder Joints in the Framework of Rework and Reuse of MLCC Components","authors":"Erik Wiss, Steffen Wiese","doi":"10.3390/met14090986","DOIUrl":null,"url":null,"abstract":"A rework of electronic assemblies and the reuse of electronic components are the most effective ways to reduce electronic waste. Since neither components nor substrates were developed with the intention of multiple usage, the question of how the integrity of lead-free solder joints is affected by multiple reflow operations is crucial for the implementation of any reuse strategy. Therefore, various types of 1206 multilayer ceramic capacitors (MLCCs) differing in their capacitance value and dielectric type (X5R, X7R, Y5V, NP0) were soldered on test printed circuit boards (PCBs) having a pure Cu-metallization surface in order to investigate the intermetallic reactions during multiple reflows. The metallization system on the MLCC-component side consisted of a thick film of Ni covered by galvanic-deposited Sn. The reflow experiments were conducted using a hypoeutectic SnAgCu solder. The results show the formation of a Cu6Sn5 intermetallic phase on both metallizations, which grows homogeneously with the number of reflows. Moreover, an ongoing decomposition of the solder into Ag-enriched and depleted zones was observed. The effect of these microstructural changes on the functionality of the solder joint was investigated by mechanical shear experiments and electrical four-point capacitance measurements.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"69 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14090986","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A rework of electronic assemblies and the reuse of electronic components are the most effective ways to reduce electronic waste. Since neither components nor substrates were developed with the intention of multiple usage, the question of how the integrity of lead-free solder joints is affected by multiple reflow operations is crucial for the implementation of any reuse strategy. Therefore, various types of 1206 multilayer ceramic capacitors (MLCCs) differing in their capacitance value and dielectric type (X5R, X7R, Y5V, NP0) were soldered on test printed circuit boards (PCBs) having a pure Cu-metallization surface in order to investigate the intermetallic reactions during multiple reflows. The metallization system on the MLCC-component side consisted of a thick film of Ni covered by galvanic-deposited Sn. The reflow experiments were conducted using a hypoeutectic SnAgCu solder. The results show the formation of a Cu6Sn5 intermetallic phase on both metallizations, which grows homogeneously with the number of reflows. Moreover, an ongoing decomposition of the solder into Ag-enriched and depleted zones was observed. The effect of these microstructural changes on the functionality of the solder joint was investigated by mechanical shear experiments and electrical four-point capacitance measurements.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.