Production of Spheroidized Micropowders of W-Ni-Fe Pseudo-Alloy Using Plasma Technology

IF 2.6 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Metals Pub Date : 2024-09-13 DOI:10.3390/met14091043
Andrey Samokhin, Nikolay Alekseev, Aleksey Dorofeev, Andrey Fadeev, Mikhail Sinaiskiy
{"title":"Production of Spheroidized Micropowders of W-Ni-Fe Pseudo-Alloy Using Plasma Technology","authors":"Andrey Samokhin, Nikolay Alekseev, Aleksey Dorofeev, Andrey Fadeev, Mikhail Sinaiskiy","doi":"10.3390/met14091043","DOIUrl":null,"url":null,"abstract":"The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with a confined jet flow. A mixture of tungsten trioxide, nickel oxide, and iron oxide powders interacted with a flow of hydrogen-containing plasma generated in an electric-arc plasma torch. The parameters of the spray-drying process and the composition of a suspension consisting of WNiFe-90 nanoparticles were determined, which provided mechanically strong nanopowder microgranules with a rounded shape and a homogeneous internal structure that contained no cavities. The yield of the granule fraction under 50 μm was 60%. The influence of the process parameters of the plasma treatment of the nanopowder microgranules in the thermal plasma flow on the degree of spheroidization and the microstructure of the obtained particles, seen as their bulk density and fluidity, was established. It was shown that the plasma spheroidization of the microgranules of the W-Ni-Fe system promoted the formation of a submicron internal structure in the obtained spherical particles, which were characterized by an average tungsten grain size of 0.7 μm.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"24 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with a confined jet flow. A mixture of tungsten trioxide, nickel oxide, and iron oxide powders interacted with a flow of hydrogen-containing plasma generated in an electric-arc plasma torch. The parameters of the spray-drying process and the composition of a suspension consisting of WNiFe-90 nanoparticles were determined, which provided mechanically strong nanopowder microgranules with a rounded shape and a homogeneous internal structure that contained no cavities. The yield of the granule fraction under 50 μm was 60%. The influence of the process parameters of the plasma treatment of the nanopowder microgranules in the thermal plasma flow on the degree of spheroidization and the microstructure of the obtained particles, seen as their bulk density and fluidity, was established. It was shown that the plasma spheroidization of the microgranules of the W-Ni-Fe system promoted the formation of a submicron internal structure in the obtained spherical particles, which were characterized by an average tungsten grain size of 0.7 μm.
利用等离子体技术生产 W-Ni-Fe 伪合金球状微粉
研究了从 W-Ni-Fe 系统中 5-50 μm 部分获得粉末的过程,该部分主要由球形颗粒组成。在一个具有封闭射流的等离子体反应器中,进行了由 WNiFe-90 组成的纳米粉体的等离子体化学合成实验研究。三氧化钨、氧化镍和氧化铁粉末的混合物与电弧等离子体炬中产生的含氢等离子体流相互作用。确定了喷雾干燥过程的参数和由 WNiFe-90 纳米颗粒组成的悬浮液的成分,该悬浮液提供了机械强度高的纳米粉体微颗粒,其形状呈圆形,内部结构均匀且不含空腔。50 μm 以下颗粒部分的产量为 60%。研究确定了在热等离子体流中对纳米粉体微粒进行等离子体处理的工艺参数对所获得颗粒的球化程度和微观结构(即其体积密度和流动性)的影响。结果表明,W-Ni-Fe 系统微粒的等离子体球化促进了所获得球形颗粒亚微米内部结构的形成,其特征是平均钨晶粒大小为 0.7 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals
Metals MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
4.90
自引率
13.80%
发文量
1832
审稿时长
1.5 months
期刊介绍: Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信