Justin Spilker, Rebecca C. Levy, Daniel P. Marrone, Stacey Alberts, Scott C. Chapman, Mark Dickinson, Eiichi Egami, Ryan Endsley, Desika Narayanan, George Rieke, Antony A. Stark, Alexander Tielens, Christopher K. Walker
{"title":"High-redshift extragalactic science with the Single Aperture Large Telescope for Universe Studies (SALTUS) space observatory","authors":"Justin Spilker, Rebecca C. Levy, Daniel P. Marrone, Stacey Alberts, Scott C. Chapman, Mark Dickinson, Eiichi Egami, Ryan Endsley, Desika Narayanan, George Rieke, Antony A. Stark, Alexander Tielens, Christopher K. Walker","doi":"10.1117/1.jatis.10.4.042305","DOIUrl":null,"url":null,"abstract":"We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.4.042305","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
We present an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared (IR) National Aeronautics and Space Administration probe-class mission concept. Enabled by its 14-m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s and a natural follow-on to the near- and mid-IR capabilities of JWST. The key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time and charting the rise of metals and dust from the early universe to the present. We summarize these science cases and the performance metrics most relevant for high-redshift observations.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.