Active Components of Wen Fei Fu Yang Qu Tan Fang and its Molecular Targets for Chronic Obstructive Pulmonary Disease Based on Network Pharmacology and Molecular Docking
{"title":"Active Components of Wen Fei Fu Yang Qu Tan Fang and its Molecular Targets for Chronic Obstructive Pulmonary Disease Based on Network Pharmacology and Molecular Docking","authors":"Yangrong Feng, Wei Zhang, Sanyu Bao, Jieru Shen","doi":"10.1007/s12013-024-01498-0","DOIUrl":null,"url":null,"abstract":"<p>To investigate the mechanism of Wen Fei Fu Yang Qu Tan Fang (WFFYQTF) in the treatment of chronic obstructive pulmonary disease (COPD) using network pharmacology and pharmacodynamics. The TCMSP database was utilized to identify the chemical components and molecular targets of WFFYQTF. Cytoscape software was employed to construct a “drug component-target” network. COPD risk genes and intersecting molecular targets of WFFYQTF were identified using GeneCards, OMIM, and DisGeNET databases. The STRING website was the place where protein–protein interaction (PPI) analysis was performed. Cytoscape topological analysis was applied for screening out key targets of WFFYQTF. GO and KEGG enrichment analyses were conducted using the DAVID database to elucidate the treatment targets of COPD with WFFYQTF. A total of 136 active components of WFFYQTF were identified, including key components such as quercetin, kaempferol, and luteolin, which were found to be particularly significant. Additionally, 412 drug targets and 7121 COPD risk genes were screened out, and 323 treatment targets of COPD with WFFYQTF were determined by Wayne analysis. Core targets identified via PPI analysis included SRC, STAT3, AKT1, HSP90AA1, and JUN. Pathways such as the hypoxia responce, inflammatory response, PI3K/AKT pathway, TH17 pathway and MAPK pathway were obtained with GO and KEGG enrichment analyses. Molecular docking results suggested that quercetin could be soundly bound to STAT3 and AKT1, and kaempferol to SRC. WFFYQTF can effectively impede COPD progression through the coordinated action of multiple components, targets, and pathways during treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01498-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the mechanism of Wen Fei Fu Yang Qu Tan Fang (WFFYQTF) in the treatment of chronic obstructive pulmonary disease (COPD) using network pharmacology and pharmacodynamics. The TCMSP database was utilized to identify the chemical components and molecular targets of WFFYQTF. Cytoscape software was employed to construct a “drug component-target” network. COPD risk genes and intersecting molecular targets of WFFYQTF were identified using GeneCards, OMIM, and DisGeNET databases. The STRING website was the place where protein–protein interaction (PPI) analysis was performed. Cytoscape topological analysis was applied for screening out key targets of WFFYQTF. GO and KEGG enrichment analyses were conducted using the DAVID database to elucidate the treatment targets of COPD with WFFYQTF. A total of 136 active components of WFFYQTF were identified, including key components such as quercetin, kaempferol, and luteolin, which were found to be particularly significant. Additionally, 412 drug targets and 7121 COPD risk genes were screened out, and 323 treatment targets of COPD with WFFYQTF were determined by Wayne analysis. Core targets identified via PPI analysis included SRC, STAT3, AKT1, HSP90AA1, and JUN. Pathways such as the hypoxia responce, inflammatory response, PI3K/AKT pathway, TH17 pathway and MAPK pathway were obtained with GO and KEGG enrichment analyses. Molecular docking results suggested that quercetin could be soundly bound to STAT3 and AKT1, and kaempferol to SRC. WFFYQTF can effectively impede COPD progression through the coordinated action of multiple components, targets, and pathways during treatment.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.