Chengcheng Liu, Shibin Wang, Fei Jia, Bo Zheng, Shuaishuai Li, Yuheng Yang, Yang Gao, Jinzhou Zhao
{"title":"Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent","authors":"Chengcheng Liu, Shibin Wang, Fei Jia, Bo Zheng, Shuaishuai Li, Yuheng Yang, Yang Gao, Jinzhou Zhao","doi":"10.1515/polyeng-2024-0076","DOIUrl":null,"url":null,"abstract":"A novel hydrophobic association copolymer (PAMA) was synthesized by incorporating acrylamide (AM), 2-acrylamide-2-methylpropanesulfonic acid (AMPS), cationic monomer (MEDDA), and methyl methacrylate (MMA). The properties of MMA copolymers with varying contents were analyzed using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Optimal overall performance of the solution was achieved when the MMA content reached 1.4 % w/w. Compared to pure PAAM (without MMA), the PAMA-1.4 % polymer exhibited superior viscoelasticity, temperature resistance, and shear resistance. This enhancement in PAMA performance can be attributed to the significant inhibition of intermolecular water film formation within the polymer matrix by MMA, effectively improving and regulating solution solubility while strengthening molecular chain interactions and enhancing the structural network strength of PAMA polymers. Additionally, the inclusion of MMA transformed rock surfaces from non-wetting to wetting conditions, thereby greatly improving oil displacement efficiency. In displacement experiments, PAMA-1.4 % performed better in terms of enhanced oil recovery, the recovery rate of 0.1 % w/w PAMA-2.4 % solution is only 7.78 %, while the recovery rate of 0.1 % w/w PAMA-1.4 % solution is 13.06 %.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A novel hydrophobic association copolymer (PAMA) was synthesized by incorporating acrylamide (AM), 2-acrylamide-2-methylpropanesulfonic acid (AMPS), cationic monomer (MEDDA), and methyl methacrylate (MMA). The properties of MMA copolymers with varying contents were analyzed using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Optimal overall performance of the solution was achieved when the MMA content reached 1.4 % w/w. Compared to pure PAAM (without MMA), the PAMA-1.4 % polymer exhibited superior viscoelasticity, temperature resistance, and shear resistance. This enhancement in PAMA performance can be attributed to the significant inhibition of intermolecular water film formation within the polymer matrix by MMA, effectively improving and regulating solution solubility while strengthening molecular chain interactions and enhancing the structural network strength of PAMA polymers. Additionally, the inclusion of MMA transformed rock surfaces from non-wetting to wetting conditions, thereby greatly improving oil displacement efficiency. In displacement experiments, PAMA-1.4 % performed better in terms of enhanced oil recovery, the recovery rate of 0.1 % w/w PAMA-2.4 % solution is only 7.78 %, while the recovery rate of 0.1 % w/w PAMA-1.4 % solution is 13.06 %.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.