{"title":"Unveiling the molecular interplay between a novel chromene derivative and DNA: a multifaceted investigation","authors":"Dipak Kumar Sahoo, Nilima Priyadarsini Mishra, Shamasoddin Shekh, Emmanuel E. Etim","doi":"10.1007/s11696-024-03654-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study comprehensively investigates the interactions between a new chromene derivative, 8-methoxy-3-nitro-2-(4-methoxyphenyl)-2H-chromene (MMNC), and DNA using a combination of experimental and computational techniques. MTT assays demonstrated MMNC’s potent anticancer activity against various cell lines, with lower IC50 values than the clinically used drug 5-fluorouracil. Spectroscopic techniques including circular dichroism, dynamic light scattering, UV–visible absorption, and fluorescence quenching experiments revealed that MMNC interacts with DNA at its minor groove without significantly altering its overall structure. The binding constant (Ka) was determined to be 3.09 × 10<sup>3</sup> M<sup>−1</sup>, indicating moderate groove binding. Molecular docking simulations supported the experimental findings, showing MMNC favorably binds to the DNA minor groove with a docking score of − 2.5 kcal/mol and binding free energy of − 26 kcal/mol. DFT studies provided insights into MMNC's electronic properties, with a HOMO–LUMO energy gap of 3.14 eV suggesting good reactivity. ADME/Tox analysis confirmed MMNC's drug-like properties, with no violations of Lipinski's rule of five or Jorgensen's rule of three. The comprehensive results demonstrate MMNC's promising potential as an anticancer agent and provide a foundation for rational design of improved chromene-based drugs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-024-03654-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03654-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study comprehensively investigates the interactions between a new chromene derivative, 8-methoxy-3-nitro-2-(4-methoxyphenyl)-2H-chromene (MMNC), and DNA using a combination of experimental and computational techniques. MTT assays demonstrated MMNC’s potent anticancer activity against various cell lines, with lower IC50 values than the clinically used drug 5-fluorouracil. Spectroscopic techniques including circular dichroism, dynamic light scattering, UV–visible absorption, and fluorescence quenching experiments revealed that MMNC interacts with DNA at its minor groove without significantly altering its overall structure. The binding constant (Ka) was determined to be 3.09 × 103 M−1, indicating moderate groove binding. Molecular docking simulations supported the experimental findings, showing MMNC favorably binds to the DNA minor groove with a docking score of − 2.5 kcal/mol and binding free energy of − 26 kcal/mol. DFT studies provided insights into MMNC's electronic properties, with a HOMO–LUMO energy gap of 3.14 eV suggesting good reactivity. ADME/Tox analysis confirmed MMNC's drug-like properties, with no violations of Lipinski's rule of five or Jorgensen's rule of three. The comprehensive results demonstrate MMNC's promising potential as an anticancer agent and provide a foundation for rational design of improved chromene-based drugs.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.