Gaoxin Zhang, Zelun Zhi, Bin Pan, Zemin Li, Shuyan Zhang, Zhenzhen Wu, Pengcheng Bu, Zhen Cao, Pingsheng Liu
{"title":"Cationic Adiposomes as a Delivery System for Neogambogic Acid for the Treatment of Multiple Cancers","authors":"Gaoxin Zhang, Zelun Zhi, Bin Pan, Zemin Li, Shuyan Zhang, Zhenzhen Wu, Pengcheng Bu, Zhen Cao, Pingsheng Liu","doi":"10.1002/adtp.202400201","DOIUrl":null,"url":null,"abstract":"<p>Neogambogic acid (NGA) is a potent antitumor drug but faces significant obstacles to clinical application, including extremely poor water solubility and systemic toxicity. To overcome these obstacles, a newly developed nanoparticle, adiposome, that consists of a neutral lipid core wrapped with a phospholipid-monolayer membrane, is utilized for the delivery of NGA. In this study, NGA-loaded cationic adiposomes (NGA-C-ADs) are constructed in which NGA is encapsulated within the neutral lipid core and surrounded by phospholipids and a cationic lipid. The concentration of NGA in NGA-C-ADs achieved is as high as 1.0 mg mL<sup>−1</sup>, which is 2 000-fold higher than in aqueous buffer alone. Moreover, in vitro cell tests revealed that NGA-C-ADs exhibited higher cytotoxicity against various cancer cell lines compared to free NGA. In addition, in vivo anti-tumor animal studies demonstrate that NGA-C-ADs effectively inhibit tumor growth in subcutaneous CT26 tumor-bearing mice and also suppress chemically-induced hepatocellular carcinoma without obvious toxicity to major organs. These findings suggest that NGA-C-ADs hold promise as a potential treatment for multiple cancers.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Neogambogic acid (NGA) is a potent antitumor drug but faces significant obstacles to clinical application, including extremely poor water solubility and systemic toxicity. To overcome these obstacles, a newly developed nanoparticle, adiposome, that consists of a neutral lipid core wrapped with a phospholipid-monolayer membrane, is utilized for the delivery of NGA. In this study, NGA-loaded cationic adiposomes (NGA-C-ADs) are constructed in which NGA is encapsulated within the neutral lipid core and surrounded by phospholipids and a cationic lipid. The concentration of NGA in NGA-C-ADs achieved is as high as 1.0 mg mL−1, which is 2 000-fold higher than in aqueous buffer alone. Moreover, in vitro cell tests revealed that NGA-C-ADs exhibited higher cytotoxicity against various cancer cell lines compared to free NGA. In addition, in vivo anti-tumor animal studies demonstrate that NGA-C-ADs effectively inhibit tumor growth in subcutaneous CT26 tumor-bearing mice and also suppress chemically-induced hepatocellular carcinoma without obvious toxicity to major organs. These findings suggest that NGA-C-ADs hold promise as a potential treatment for multiple cancers.