Edward R Neves, Achal Anand, Joseph Mueller, Roddel A Remy, Hui Xu, Kim A Selting, Jann N Sarkaria, Brendan AC Harley, Sara Pedron-Haba
{"title":"Targeting Glioblastoma Tumor Hyaluronan to Enhance Therapeutic Interventions that Regulate Metabolic Cell Properties","authors":"Edward R Neves, Achal Anand, Joseph Mueller, Roddel A Remy, Hui Xu, Kim A Selting, Jann N Sarkaria, Brendan AC Harley, Sara Pedron-Haba","doi":"10.1002/adtp.202400041","DOIUrl":null,"url":null,"abstract":"<p>Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. It is aimed here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. Tissue engineering approaches are used to recreate the 3D tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient-derived xenograft GBM cells. It is revealed that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype-dependent manner. A tumor-specific combination treatment of HYAL and HAS inhibitors is proposed to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand – dependent signaling roles of hyaluronan in glioblastoma.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. It is aimed here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. Tissue engineering approaches are used to recreate the 3D tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient-derived xenograft GBM cells. It is revealed that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype-dependent manner. A tumor-specific combination treatment of HYAL and HAS inhibitors is proposed to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand – dependent signaling roles of hyaluronan in glioblastoma.