Observing Context Improves Disparity Estimation when Race is Unobserved

Kweku Kwegyir-Aggrey, Naveen Durvasula, Jennifer Wang, Suresh Venkatasubramanian
{"title":"Observing Context Improves Disparity Estimation when Race is Unobserved","authors":"Kweku Kwegyir-Aggrey, Naveen Durvasula, Jennifer Wang, Suresh Venkatasubramanian","doi":"arxiv-2409.01984","DOIUrl":null,"url":null,"abstract":"In many domains, it is difficult to obtain the race data that is required to\nestimate racial disparity. To address this problem, practitioners have adopted\nthe use of proxy methods which predict race using non-protected covariates.\nHowever, these proxies often yield biased estimates, especially for minority\ngroups, limiting their real-world utility. In this paper, we introduce two new\ncontextual proxy models that advance existing methods by incorporating\ncontextual features in order to improve race estimates. We show that these\nalgorithms demonstrate significant performance improvements in estimating\ndisparities on real-world home loan and voter data. We establish that achieving\nunbiased disparity estimates with contextual proxies relies on\nmean-consistency, a calibration-like condition.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many domains, it is difficult to obtain the race data that is required to estimate racial disparity. To address this problem, practitioners have adopted the use of proxy methods which predict race using non-protected covariates. However, these proxies often yield biased estimates, especially for minority groups, limiting their real-world utility. In this paper, we introduce two new contextual proxy models that advance existing methods by incorporating contextual features in order to improve race estimates. We show that these algorithms demonstrate significant performance improvements in estimating disparities on real-world home loan and voter data. We establish that achieving unbiased disparity estimates with contextual proxies relies on mean-consistency, a calibration-like condition.
当种族无法观测时,观测背景可改进差异估计
在许多领域,很难获得估计种族差异所需的种族数据。为了解决这个问题,实践者们采用了使用非保护协变量来预测种族的代理方法。然而,这些代理方法往往会产生有偏差的估计值,尤其是对少数群体而言,这限制了它们在现实世界中的实用性。在本文中,我们介绍了两种新的语境代理模型,它们通过结合语境特征来改进种族估计值,从而推动了现有方法的发展。我们的研究表明,这些算法在实际房屋贷款和选民数据的差异估计中表现出了显著的性能提升。我们证实,利用上下文代理实现无偏的差异估计依赖于均值一致性,这是一个类似校准的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信