{"title":"A Modified Interior Penalty Virtual Element Method for Fourth-Order Singular Perturbation Problems","authors":"Fang Feng, Yue Yu","doi":"10.1007/s10915-024-02665-4","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed in Zhao et al. (Math Comp 92(342):1543–1574, 2023), the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"390 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02665-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed in Zhao et al. (Math Comp 92(342):1543–1574, 2023), the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.