An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Gang Chen, Peter Monk, Yangwen Zhang
{"title":"An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity","authors":"Gang Chen, Peter Monk, Yangwen Zhang","doi":"10.1007/s10915-024-02643-w","DOIUrl":null,"url":null,"abstract":"<p>We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are <i>piecewise</i> <span>\\(W^{1, \\infty }\\)</span>. This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"65 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02643-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to use a hybridizable discontinuous Galerkin (HDG) method combined with the continuous Galerkin (CG) method to approximate Maxwell’s equations. We make two contributions in this paper. First, even though there are many papers using HDG methods to approximate Maxwell’s equations, to our knowledge they all assume that the coefficients are smooth (or constant). Here, we derive optimal convergence estimates for our HDG-CG approximation when the electromagnetic coefficients are piecewise \(W^{1, \infty }\). This requires new techniques of analysis. Second, we use CG elements to approximate the Lagrange multiplier used to enforce the divergence condition and we obtain a discrete system in which we can decouple the discrete Lagrange multiplier. Because we are using a continuous Lagrange multiplier space, the number of degrees of freedom devoted to this are less than for other HDG methods. We present numerical experiments to confirm our theoretical results.

最小正则性下的无限时谐麦克斯韦方程的 HDG 和 CG 方法
我们建议使用混合非连续伽勒金(HDG)方法与连续伽勒金(CG)方法相结合来逼近麦克斯韦方程。我们在本文中有两个贡献。首先,尽管有很多论文使用 HDG 方法来近似麦克斯韦方程,但据我们所知,它们都假设系数是平滑的(或常数)。在这里,我们推导出了当电磁系数为片状(W^{1, \infty }\ )时,我们的 HDG-CG 近似的最佳收敛估计值。这需要新的分析技术。其次,我们使用 CG 元素来近似用于强制执行发散条件的拉格朗日乘法器,从而得到一个离散系统,在这个系统中,我们可以解耦离散拉格朗日乘法器。由于我们使用的是连续的拉格朗日乘数空间,因此与其他 HDG 方法相比,用于此的自由度较少。我们通过数值实验来证实我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信