{"title":"Curvature-Dependent Elastic Bending Total Variation Model for Image Inpainting with the SAV Algorithm","authors":"Caixia Nan, Zhonghua Qiao, Qian Zhang","doi":"10.1007/s10915-024-02666-3","DOIUrl":null,"url":null,"abstract":"<p>Image inpainting is pivotal within the realm of image processing, and many efforts have been dedicated to modeling, theory, and numerical analysis in this research area. In this paper, we propose a curvature-dependent elastic bending total variation model for the inpainting problem, in which the elastic bending energy in the phase-field framework introduces geometric information and the total variation term maintains the sharpness of the inpainting edge, referred to as elastic bending-TV model. The energy stability is theoretically proved based on the scalar auxiliary variable method. Additionally, an adaptive time-stepping algorithm is used to further improve the computational efficiency. Numerical experiments illustrate the effectiveness of the proposed model and verify the capability of our model in image inpainting.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02666-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Image inpainting is pivotal within the realm of image processing, and many efforts have been dedicated to modeling, theory, and numerical analysis in this research area. In this paper, we propose a curvature-dependent elastic bending total variation model for the inpainting problem, in which the elastic bending energy in the phase-field framework introduces geometric information and the total variation term maintains the sharpness of the inpainting edge, referred to as elastic bending-TV model. The energy stability is theoretically proved based on the scalar auxiliary variable method. Additionally, an adaptive time-stepping algorithm is used to further improve the computational efficiency. Numerical experiments illustrate the effectiveness of the proposed model and verify the capability of our model in image inpainting.