{"title":"Response surface method‐based hydraulic performance optimization of a single‐stage centrifugal pump","authors":"Durvesh Yadav, Raj Kumar Singh, K. Manjunath","doi":"10.1002/fld.5332","DOIUrl":null,"url":null,"abstract":"In this article, the response surface approach was employed to enhance the hydraulic performance of the pump at the rated point. Specifically, an approximate link between the design head and efficiency of the single‐stage centrifugal pump and the parameters of the impeller's design was established. The first step in creating a one‐factor experimental design involved selecting significant geometric variables as factors. Decision variables such as the number of blades, flow rate, and rotation were chosen due to their significant impact on hydraulic performance, while head and efficiency were considered as responses. Subsequently, the best‐optimized values for each level of the parameters were identified using response surface analysis and a central composite design. The impeller schemes of the Design‐Expert software were evaluated for head and efficiency using Computational fluid dynamics, and a total of 20 experiments were conducted. The simulated results were then validated with experimental data. Through the analysis of the individual parameters and the approximation model, the ideal parameter combination that increased head and efficiency by 7.90% and 2.06%, respectively, at the rated value was discovered. It is worth noting that in cases of a high rate of flow, the inner flow was also enhanced.","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fld.5332","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the response surface approach was employed to enhance the hydraulic performance of the pump at the rated point. Specifically, an approximate link between the design head and efficiency of the single‐stage centrifugal pump and the parameters of the impeller's design was established. The first step in creating a one‐factor experimental design involved selecting significant geometric variables as factors. Decision variables such as the number of blades, flow rate, and rotation were chosen due to their significant impact on hydraulic performance, while head and efficiency were considered as responses. Subsequently, the best‐optimized values for each level of the parameters were identified using response surface analysis and a central composite design. The impeller schemes of the Design‐Expert software were evaluated for head and efficiency using Computational fluid dynamics, and a total of 20 experiments were conducted. The simulated results were then validated with experimental data. Through the analysis of the individual parameters and the approximation model, the ideal parameter combination that increased head and efficiency by 7.90% and 2.06%, respectively, at the rated value was discovered. It is worth noting that in cases of a high rate of flow, the inner flow was also enhanced.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.