{"title":"Convergence Analysis for the Wave Equation Discretized with Hybrid Methods in Space (HHO, HDG and WG) and the Leapfrog Scheme in Time","authors":"Alexandre Ern, Morgane Steins","doi":"10.1007/s10915-024-02609-y","DOIUrl":null,"url":null,"abstract":"<p>We prove the optimal convergence in space and time for the linear acoustic wave equation in its second-order formulation in time, using the hybrid high-order method for space discretization and the leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin methods, but some novel ideas need to be introduced to handle the static coupling between cell and face unknowns. Because of the close ties between the methods, the present proof can be readily extended to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak Galerkin method.\n</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"88 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02609-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the optimal convergence in space and time for the linear acoustic wave equation in its second-order formulation in time, using the hybrid high-order method for space discretization and the leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin methods, but some novel ideas need to be introduced to handle the static coupling between cell and face unknowns. Because of the close ties between the methods, the present proof can be readily extended to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak Galerkin method.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.