An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Muhammad Mohebujjaman, Julian Miranda, Md. Abdullah Al Mahbub, Mengying Xiao
{"title":"An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems","authors":"Muhammad Mohebujjaman, Julian Miranda, Md. Abdullah Al Mahbub, Mengying Xiao","doi":"10.1007/s10915-024-02633-y","DOIUrl":null,"url":null,"abstract":"<p>We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02633-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.

Abstract Image

针对随机磁流体动力流问题的高效、精确的惩罚性投影涡流粘度算法
我们提出、分析并测试了一种基于惩罚投影的鲁棒高效精确算法,用于对流主导状态下的时变磁流体动力学(MHD)流动问题的不确定性量化(UQ)。该算法使用 Elsässer 变量公式和离散霍奇分解,将随机 MHD 系统解耦为四个子问题(每个实现的每个时间步),这比求解耦合鞍点问题要容易得多。每个子问题的设计都很复杂,因此在每个时间步长,所有实现的系统矩阵都是相同的,但右侧向量不同,这样可以节省大量的计算机内存和计算时间。此外,该方案还配备了集合涡流粘度(EEV)和 grad-div 稳定项。与算法时间步长有关的无条件稳定性得到了严格证明。我们证明了所提出的方案在大梯度稳定参数值下收敛于等效的非投影耦合 MHD 方案。我们研究了如何将随机配准法(SCM)与所提出的惩罚投影 UQ 算法相结合。最后,我们给出了一系列数值实验,验证了预测的收敛率,展示了该算法在矩形阶梯上的基准通道流、具有高随机雷诺数和高随机磁雷诺数的正则化盖驱动空腔问题上的性能,以及 EEV 稳定在 MHD UQ 算法中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信