Direct Discontinuous Galerkin Method with Interface Correction for the Keller-Segel Chemotaxis Model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xinghui Zhong, Changxin Qiu, Jue Yan
{"title":"Direct Discontinuous Galerkin Method with Interface Correction for the Keller-Segel Chemotaxis Model","authors":"Xinghui Zhong, Changxin Qiu, Jue Yan","doi":"10.1007/s10915-024-02648-5","DOIUrl":null,"url":null,"abstract":"<p>The Keller-Segel (KS) chemotaxis equation is a widely studied mathematical model for understanding the collective behavior of cells in response to chemical gradients. This paper investigates the direct discontinuous Galerkin method with interface correction (DDGIC) for one-dimensional and two-dimensional KS equations governing the cell density and chemoattractant concentration. We establish error estimates for the proposed scheme under suitable smoothness assumptions of the exact solutions. Numerical experiments are conducted to validate the theoretical results. We explore the impact of different coefficient settings in the numerical fluxes on the error of the DDGIC method on uniform and nonuniform meshes. Our findings reveal that the DDGIC method achieves optimal convergence rates with any admissible coefficients for polynomials of odd degrees, while the accuracy of the cell density is sensitive to the numerical flux coefficient in the chemoattractant concentration for polynomials of even degrees. These results hold regardless of whether the mesh is uniform or nonuniform.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02648-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Keller-Segel (KS) chemotaxis equation is a widely studied mathematical model for understanding the collective behavior of cells in response to chemical gradients. This paper investigates the direct discontinuous Galerkin method with interface correction (DDGIC) for one-dimensional and two-dimensional KS equations governing the cell density and chemoattractant concentration. We establish error estimates for the proposed scheme under suitable smoothness assumptions of the exact solutions. Numerical experiments are conducted to validate the theoretical results. We explore the impact of different coefficient settings in the numerical fluxes on the error of the DDGIC method on uniform and nonuniform meshes. Our findings reveal that the DDGIC method achieves optimal convergence rates with any admissible coefficients for polynomials of odd degrees, while the accuracy of the cell density is sensitive to the numerical flux coefficient in the chemoattractant concentration for polynomials of even degrees. These results hold regardless of whether the mesh is uniform or nonuniform.

Abstract Image

针对凯勒-西格尔趋化模型的带界面校正的直接非连续伽勒金方法
Keller-Segel (KS) 趋化方程是一个被广泛研究的数学模型,用于理解细胞对化学梯度的集体行为。本文研究了带有界面校正的直接非连续伽勒金方法(DDGIC),用于控制细胞密度和趋化物质浓度的一维和二维 KS 方程。在精确解的适当平滑性假设条件下,我们建立了拟议方案的误差估计。我们进行了数值实验来验证理论结果。我们探讨了数值通量中不同系数设置对均匀和非均匀网格上 DDGIC 方法误差的影响。我们的研究结果表明,对于奇数度多项式,DDGIC 方法在任何可容许系数下都能达到最佳收敛率,而对于偶数度多项式,细胞密度的准确性对趋化物质浓度中的数值通量系数非常敏感。无论网格是均匀的还是非均匀的,这些结果都是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信