{"title":"Poissonian Image Restoration Via the $$L_1/L_2$$ -Based Minimization","authors":"Mujibur Rahman Chowdhury, Chao Wang, Yifei Lou","doi":"10.1007/s10915-024-02657-4","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the Poissonian image restoration problems. In particular, we propose a novel model that incorporates <span>\\(L_1/L_2\\)</span> minimization on the gradient as a regularization term combined with a box constraint and a nonlinear data fidelity term, specifically crafted to address the challenges caused by Poisson noise. We employ a splitting strategy, followed by the alternating direction method of multipliers (ADMM) to find a model solution. Furthermore, we show that under mild conditions, the sequence generated by ADMM has a sub-sequence that converges to a stationary point of the proposed model. Through numerical experiments on image deconvolution, super-resolution, and magnetic resonance imaging (MRI) reconstruction, we demonstrate superior performance made by the proposed approach over some existing gradient-based methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02657-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the Poissonian image restoration problems. In particular, we propose a novel model that incorporates \(L_1/L_2\) minimization on the gradient as a regularization term combined with a box constraint and a nonlinear data fidelity term, specifically crafted to address the challenges caused by Poisson noise. We employ a splitting strategy, followed by the alternating direction method of multipliers (ADMM) to find a model solution. Furthermore, we show that under mild conditions, the sequence generated by ADMM has a sub-sequence that converges to a stationary point of the proposed model. Through numerical experiments on image deconvolution, super-resolution, and magnetic resonance imaging (MRI) reconstruction, we demonstrate superior performance made by the proposed approach over some existing gradient-based methods.