A Novel Dynamic Recognition Method of Rock Burst Precursor Information Based on Adaptive Denoising and Object Detection

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shenglei Zhao, Jinxin Wang, Enyuan Wang, Qiming Zhang, Huihan Yang, Zhonghui Li
{"title":"A Novel Dynamic Recognition Method of Rock Burst Precursor Information Based on Adaptive Denoising and Object Detection","authors":"Shenglei Zhao, Jinxin Wang, Enyuan Wang, Qiming Zhang, Huihan Yang, Zhonghui Li","doi":"10.1007/s42461-024-01055-6","DOIUrl":null,"url":null,"abstract":"<p>Acoustic emission (AE) and electromagnetic radiation (EMR) can reflect the precursor information of rock burst and play important roles in rock burst monitoring, early warning, and prevention. However, the existing denoising methods of AE and EMR monitoring signals are poor, and the recognition of precursor information lacks comprehensiveness, accuracy, and real-time. This paper presents a novel method combining adaptive denoising and object detection to realize dynamic recognition of rock burst precursor information. Successive Variational Mode Decomposition (SVMD) adaptively decomposed the AE and EMR monitoring signals such as pulse and intensity into different mode components and Kalman Filter (KF) performed on each mode component to eliminate redundant noise. Furthermore, the YOLOX object detection algorithm recognizes the precursor information in the time–frequency domain after noise removal, including the time interval, frequency band, and energy. The case study illustrates that the precursor response of the AE and EMR monitoring signal in time–frequency domain is highlighted by denoising, and the average accuracy of different types of precursor recognition reaches 96%. Finally, the consistency of the identified precursor information and field records shows the feasibility and effectiveness of the method, which has practical guiding significance for improving the level of rock burst prevention.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01055-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic emission (AE) and electromagnetic radiation (EMR) can reflect the precursor information of rock burst and play important roles in rock burst monitoring, early warning, and prevention. However, the existing denoising methods of AE and EMR monitoring signals are poor, and the recognition of precursor information lacks comprehensiveness, accuracy, and real-time. This paper presents a novel method combining adaptive denoising and object detection to realize dynamic recognition of rock burst precursor information. Successive Variational Mode Decomposition (SVMD) adaptively decomposed the AE and EMR monitoring signals such as pulse and intensity into different mode components and Kalman Filter (KF) performed on each mode component to eliminate redundant noise. Furthermore, the YOLOX object detection algorithm recognizes the precursor information in the time–frequency domain after noise removal, including the time interval, frequency band, and energy. The case study illustrates that the precursor response of the AE and EMR monitoring signal in time–frequency domain is highlighted by denoising, and the average accuracy of different types of precursor recognition reaches 96%. Finally, the consistency of the identified precursor information and field records shows the feasibility and effectiveness of the method, which has practical guiding significance for improving the level of rock burst prevention.

Abstract Image

基于自适应去噪和物体检测的岩爆前兆信息动态识别新方法
声发射(AE)和电磁辐射(EMR)可以反映岩爆的前兆信息,在岩爆监测、预警和预防中发挥着重要作用。然而,现有的声发射(AE)和电磁辐射(EMR)监测信号去噪方法效果不佳,对前兆信息的识别缺乏全面性、准确性和实时性。本文提出了一种结合自适应去噪和目标检测的新方法,以实现岩爆前兆信息的动态识别。连续变异模式分解(SVMD)将脉冲和强度等 AE 和 EMR 监测信号自适应地分解为不同的模式分量,并对每个模式分量进行卡尔曼滤波(KF)以消除冗余噪声。此外,YOLOX 物体检测算法还能识别除噪后时频域中的前兆信息,包括时间间隔、频段和能量。案例研究表明,通过去噪,AE 和 EMR 监测信号在时频域的前兆响应得到了突出,不同类型的前兆识别平均准确率达到 96%。最后,识别出的前兆信息与现场记录的一致性说明了该方法的可行性和有效性,对提高岩爆防治水平具有现实指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信