Incorporating Operational Modes into long-Term Open-Pit Mine Planning Under Geological Uncertainty: An Optimization Combining Variable Neighborhood Descent with Linear Programming

IF 1.5 4区 工程技术 Q3 METALLURGY & METALLURGICAL ENGINEERING
Aldo Quelopana, Alessandro Navarra
{"title":"Incorporating Operational Modes into long-Term Open-Pit Mine Planning Under Geological Uncertainty: An Optimization Combining Variable Neighborhood Descent with Linear Programming","authors":"Aldo Quelopana, Alessandro Navarra","doi":"10.1007/s42461-024-01052-9","DOIUrl":null,"url":null,"abstract":"<p>Sophisticated models have progressively been developed to address the challenges related to long-term, open-pit mine planning under conditions of geological uncertainty. Prior research has acknowledged that strategies for mine planning and the design of mineral concentrators are interdependent; thus, it is highly desirable to optimize them together. However, achieving detailed holistic optimization of the entire mineral value chain remains unresolved because of the inherent limitations associated with mathematical formulations and computational processing capacity. This paper details a method that contributes to bridging these limitations by employing a novel parallelized variable neighborhood descent approach combined with an embedded mass–balance component using linear programming techniques refined through Dantzig–Wolfe decomposition. This approach is exemplified through a case study of a gold deposit, which illustrates the enhanced performance capabilities of the new algorithm. The findings demonstrate significant improvements in the optimization process for mine planning, providing a stronger link between the mine’s output and processing plant’s capabilities.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"62 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01052-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Sophisticated models have progressively been developed to address the challenges related to long-term, open-pit mine planning under conditions of geological uncertainty. Prior research has acknowledged that strategies for mine planning and the design of mineral concentrators are interdependent; thus, it is highly desirable to optimize them together. However, achieving detailed holistic optimization of the entire mineral value chain remains unresolved because of the inherent limitations associated with mathematical formulations and computational processing capacity. This paper details a method that contributes to bridging these limitations by employing a novel parallelized variable neighborhood descent approach combined with an embedded mass–balance component using linear programming techniques refined through Dantzig–Wolfe decomposition. This approach is exemplified through a case study of a gold deposit, which illustrates the enhanced performance capabilities of the new algorithm. The findings demonstrate significant improvements in the optimization process for mine planning, providing a stronger link between the mine’s output and processing plant’s capabilities.

Abstract Image

在地质不确定性条件下将运营模式纳入露天矿长期规划:可变邻域后裔与线性规划相结合的优化方法
为了应对地质不确定性条件下长期露天矿规划的挑战,人们逐步开发出了先进的模型。先前的研究已经认识到,矿山规划战略和选矿厂设计战略是相互依存的;因此,将二者结合起来进行优化是非常可取的。然而,由于数学公式和计算处理能力的固有限制,实现整个矿产价值链的详细整体优化仍是一个悬而未决的问题。本文详细介绍了一种有助于弥合这些限制的方法,即采用一种新颖的并行化变量邻域下降方法,结合嵌入式质量平衡组件,使用通过 Dantzig-Wolfe 分解精炼的线性规划技术。该方法通过对金矿的案例研究进行了示范,说明了新算法性能的增强。研究结果表明,矿山规划的优化过程有了明显改善,矿山产出与加工厂能力之间的联系更加紧密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mining, Metallurgy & Exploration
Mining, Metallurgy & Exploration Materials Science-Materials Chemistry
CiteScore
3.50
自引率
10.50%
发文量
177
期刊介绍: The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society. The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信