Zhongze Li, Minjae Kim, Jose Robert da Silva Nascimento, Bertrand Legeret, Gabriel Lemes Jorge, Marie Bertrand, Frederic Beisson, Jay J. Thelen, Yonghua Li-Beisson
{"title":"Knocking out the carboxyltransferase interactor 1 (CTI1) in Chlamydomonas boosted oil content by fivefold without affecting cell growth","authors":"Zhongze Li, Minjae Kim, Jose Robert da Silva Nascimento, Bertrand Legeret, Gabriel Lemes Jorge, Marie Bertrand, Frederic Beisson, Jay J. Thelen, Yonghua Li-Beisson","doi":"10.1101/2024.09.03.611075","DOIUrl":null,"url":null,"abstract":"The first step in chloroplast de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homolog of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein, interacts with the Chlamydomonas alpha-carboxyltransferase (Cra-CT) subunit of the ACCase by yeast two-hybrid protein-protein interaction assay. Three independent CRISPR-Cas9 mediated knock-out mutants for CrCTI1 each produced an enhanced-oil phenotype, accumulating 25% more total fatty acids and storing up to five-fold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the crcti1 mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped in vivo phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Cra-CT. However, mutating all six predicted phosphorylation sites within Cra-CT to create a phosphomimetic mutant reduced significantly this pairwise interaction. Comparative proteomic analyses of the crcti1 mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid beta-oxidation pathways, to enable cells adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for genetic engineering of microalgae for biotechnology purposes.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.611075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The first step in chloroplast de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homolog of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein, interacts with the Chlamydomonas alpha-carboxyltransferase (Cra-CT) subunit of the ACCase by yeast two-hybrid protein-protein interaction assay. Three independent CRISPR-Cas9 mediated knock-out mutants for CrCTI1 each produced an enhanced-oil phenotype, accumulating 25% more total fatty acids and storing up to five-fold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the crcti1 mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped in vivo phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Cra-CT. However, mutating all six predicted phosphorylation sites within Cra-CT to create a phosphomimetic mutant reduced significantly this pairwise interaction. Comparative proteomic analyses of the crcti1 mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid beta-oxidation pathways, to enable cells adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for genetic engineering of microalgae for biotechnology purposes.