Prediction of molecular targets for antidepressant potential of hydroalcoholic extract of Tamarindus indica using network pharmacology approach and evaluating its efficacy in Chronic Unpredictable Mild Stress model in mice
IF 2.6 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Prediction of molecular targets for antidepressant potential of hydroalcoholic extract of Tamarindus indica using network pharmacology approach and evaluating its efficacy in Chronic Unpredictable Mild Stress model in mice","authors":"Vishnusai Beere, Khushboo Choudhary, Priya Bisht, Amita Rai, Nitesh Kumar","doi":"10.1007/s13205-024-04081-9","DOIUrl":null,"url":null,"abstract":"<p>The prevalence of psychological disorders has surged since the 1990s, posing a significant global health burden with depressed individuals averaging six lost hours per week and contributing to over 20% of all missed workdays. Current antidepressants, while effective for some, have limited efficacy, dietary restrictions, and adverse effects, including liver damage and hypertension. Natural remedies offer promising therapeutic potential with minimal side effects. <i>Tamarindus indica</i> (TI) is a plant that grows in the shape of a tree. Network pharmacology of TI revealed the key targets MAPK, D1-6, 5HT, DAT, MAO, COMT, PKA, PKC, AKT, and VMAT, which are linked to prominent key pathways such as dopaminergic and serotonergic. The cell viability assays on SH-Sy5y cells indicated a favourable safety profile with an IC50 of 573.99 µg/ml and further, the in vivo efficacy was observed through Chronic Unpredictable Mild Stress (CUMS) model in mice. The hydroalcoholic extract of TI demonstrated antidepressant effects, significantly reducing immobility time in the Tail Suspension Test (TST) and Forced Swim Test (FST). Additionally, locomotor activity, assessed via the Open Field Test (OFT), was significantly increased in the treatment group compared to CUMS mice. Biochemical analyses revealed elevated Brain Derived Neurotropic Factor (BDNF), decreased cortisol levels, and reduced catechol-<i>O</i>-methyltransferase (COMT) concentration in TI-treated (50 mg/kg) groups. These findings underscore the potential of TI as a natural antidepressant, offering a promising avenue for further therapeutic development in depression management. The current study did not evaluate the level of neurotransmitters in the brain, which will be evaluated in future studies.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04081-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of psychological disorders has surged since the 1990s, posing a significant global health burden with depressed individuals averaging six lost hours per week and contributing to over 20% of all missed workdays. Current antidepressants, while effective for some, have limited efficacy, dietary restrictions, and adverse effects, including liver damage and hypertension. Natural remedies offer promising therapeutic potential with minimal side effects. Tamarindus indica (TI) is a plant that grows in the shape of a tree. Network pharmacology of TI revealed the key targets MAPK, D1-6, 5HT, DAT, MAO, COMT, PKA, PKC, AKT, and VMAT, which are linked to prominent key pathways such as dopaminergic and serotonergic. The cell viability assays on SH-Sy5y cells indicated a favourable safety profile with an IC50 of 573.99 µg/ml and further, the in vivo efficacy was observed through Chronic Unpredictable Mild Stress (CUMS) model in mice. The hydroalcoholic extract of TI demonstrated antidepressant effects, significantly reducing immobility time in the Tail Suspension Test (TST) and Forced Swim Test (FST). Additionally, locomotor activity, assessed via the Open Field Test (OFT), was significantly increased in the treatment group compared to CUMS mice. Biochemical analyses revealed elevated Brain Derived Neurotropic Factor (BDNF), decreased cortisol levels, and reduced catechol-O-methyltransferase (COMT) concentration in TI-treated (50 mg/kg) groups. These findings underscore the potential of TI as a natural antidepressant, offering a promising avenue for further therapeutic development in depression management. The current study did not evaluate the level of neurotransmitters in the brain, which will be evaluated in future studies.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.