Chester J. Sands, William P. Goodall-Copestake, Sabine Stöhr, Bhavani E. Narayanaswamy, Peter Convey, Timothy D. O’Hara, Rafael Martín-Ledo
{"title":"The diverse and widespread Southern Ocean ophiuroid Amphiura belgicae should be considered a species complex","authors":"Chester J. Sands, William P. Goodall-Copestake, Sabine Stöhr, Bhavani E. Narayanaswamy, Peter Convey, Timothy D. O’Hara, Rafael Martín-Ledo","doi":"10.3389/fevo.2024.1416418","DOIUrl":null,"url":null,"abstract":"Accurate knowledge of geographic ranges of species is essential for effective conservation management. Species with large distributions and good connectivity are presumed to be resilient to adverse localized/regional conditions, whereas those with small ranges and, thus, smaller population sizes are more likely to be vulnerable. The rich benthic assemblages across the Southern Ocean are generally considered “Antarctic” with some input from South America contributing to diversity on the sub-Antarctic island shelves. However, molecular work over the past two decades is challenging the paradigm of a general Antarctic benthic fauna, with evidence mounting for assemblages being regionally unique in terms of genetic diversity, regardless of formal taxonomic species composition. The widely distributed brittle star, <jats:italic>Amphiura belgicae</jats:italic>, is one element of the Southern Ocean benthic assemblage that has a complex historical taxonomic background hinting that it may in reality be a complex of species, each with small geographic range and little connectivity. Our study identified deep genetic divisions between geographically isolated populations, particularly between those on the Patagonian shelf and elsewhere. Indeed, populations on the Patagonian shelf were more closely related to the sympatric sister species <jats:italic>A. eugeniae</jats:italic> than to any other Southern Ocean population. We compare our data with a study of <jats:italic>Ophiuroglypha lymani</jats:italic> from similar collections, highlighting that both show highly regionalized populations, particularly on Island shelves, and both share the curious phenomenon of a presumed outgroup species being an element of the ingroup. We suggest that the isolated populations of both these species are following distinct evolutionary and ecological trajectories and that both should be treated as species complexes.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"88 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1416418","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate knowledge of geographic ranges of species is essential for effective conservation management. Species with large distributions and good connectivity are presumed to be resilient to adverse localized/regional conditions, whereas those with small ranges and, thus, smaller population sizes are more likely to be vulnerable. The rich benthic assemblages across the Southern Ocean are generally considered “Antarctic” with some input from South America contributing to diversity on the sub-Antarctic island shelves. However, molecular work over the past two decades is challenging the paradigm of a general Antarctic benthic fauna, with evidence mounting for assemblages being regionally unique in terms of genetic diversity, regardless of formal taxonomic species composition. The widely distributed brittle star, Amphiura belgicae, is one element of the Southern Ocean benthic assemblage that has a complex historical taxonomic background hinting that it may in reality be a complex of species, each with small geographic range and little connectivity. Our study identified deep genetic divisions between geographically isolated populations, particularly between those on the Patagonian shelf and elsewhere. Indeed, populations on the Patagonian shelf were more closely related to the sympatric sister species A. eugeniae than to any other Southern Ocean population. We compare our data with a study of Ophiuroglypha lymani from similar collections, highlighting that both show highly regionalized populations, particularly on Island shelves, and both share the curious phenomenon of a presumed outgroup species being an element of the ingroup. We suggest that the isolated populations of both these species are following distinct evolutionary and ecological trajectories and that both should be treated as species complexes.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.