Malvika Sagwal, Moumita Maiti, Rishabh Kumar, Pavneet Kaur, Ankur Singh, Himanshu Sharma, Yasir Arafat, Chandra Kumar, Gonika, J. Gehlot, S. Nath, N. Madhavan
{"title":"Investigating fusion attributes in \\(^{30}\\hbox {Si+}^{140}\\hbox {Ce}\\) reaction around the barrier","authors":"Malvika Sagwal, Moumita Maiti, Rishabh Kumar, Pavneet Kaur, Ankur Singh, Himanshu Sharma, Yasir Arafat, Chandra Kumar, Gonika, J. Gehlot, S. Nath, N. Madhavan","doi":"10.1140/epja/s10050-024-01394-4","DOIUrl":null,"url":null,"abstract":"<div><p>In heavy-ion collision experiments, the fusion cross section in the sub-barrier energy region is found to be enhanced by several orders of magnitude in comparison to the prediction of the one-dimensional barrier penetration model (1D-BPM) that involves the quantum mechanical tunneling effect during fusion. So far, the coupling-aided tunneling due to participating nuclei’s intrinsic degrees of freedom continues to be identified as an accountable factor. We intend to probe the role of structural properties and low-lying inelastic excitations of the colliding nuclei in driving the fusion phenomenon for energies in the near and sub-barrier regions. In the study, the fusion excitation function has been measured for <span>\\(^{30}\\hbox {Si+}^{140}\\hbox {Ce}\\)</span> reaction for energies <span>\\(\\approx \\)</span> 11% below to 13% above the Coulomb barrier. The measured fusion cross section is found to be noticeably enhanced in the sub-barrier region compared to the corresponding 1D-BPM prediction. The coupled-channel (CC) formalism in the <span>ccfull</span> framework has been employed to interpret the aforementioned intricate processes involved in fusion. The present results have been compared with those of a few nearby mass systems to understand different aspects of channel coupling in heavy-ion fusion.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01394-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In heavy-ion collision experiments, the fusion cross section in the sub-barrier energy region is found to be enhanced by several orders of magnitude in comparison to the prediction of the one-dimensional barrier penetration model (1D-BPM) that involves the quantum mechanical tunneling effect during fusion. So far, the coupling-aided tunneling due to participating nuclei’s intrinsic degrees of freedom continues to be identified as an accountable factor. We intend to probe the role of structural properties and low-lying inelastic excitations of the colliding nuclei in driving the fusion phenomenon for energies in the near and sub-barrier regions. In the study, the fusion excitation function has been measured for \(^{30}\hbox {Si+}^{140}\hbox {Ce}\) reaction for energies \(\approx \) 11% below to 13% above the Coulomb barrier. The measured fusion cross section is found to be noticeably enhanced in the sub-barrier region compared to the corresponding 1D-BPM prediction. The coupled-channel (CC) formalism in the ccfull framework has been employed to interpret the aforementioned intricate processes involved in fusion. The present results have been compared with those of a few nearby mass systems to understand different aspects of channel coupling in heavy-ion fusion.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.