Mixture density network in evaluating incomplete fission mass yields

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Vasilis Tsioulos, Vaia Prassa
{"title":"Mixture density network in evaluating incomplete fission mass yields","authors":"Vasilis Tsioulos,&nbsp;Vaia Prassa","doi":"10.1140/epja/s10050-024-01409-0","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01409-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately modeling fission product yields (FPY) is crucial yet challenging due to the complex quantum-mechanical nature of nuclear reactions. Traditional models face limitations in predictive power and handling evolving fission modes. Neural Networks (NNs) present a promising solution to these challenges by effectively modeling and predicting energy-dependent fission yields. Mixture Density Networks (MDNs) enable learning from available data, predicting unknowns, and quantifying uncertainties simultaneously. Machine learning algorithms like Gaussian Process Regression (GPR) can capture the distribution of single-fission yields and generate high-quality samples. These samples serve as valuable inputs for MDN networks. This study introduces an MDN approach for evaluating energy-dependent fission mass yields. The results indicate satisfactory accuracy in determining both the distribution positions and energy dependencies of FPYs, particularly in scenarios where experimental data are incomplete.

Abstract Image

评估不完全裂变质量当量的混合物密度网络
由于核反应具有复杂的量子力学性质,因此对裂变产物产量(FPY)进行精确建模至关重要,但也极具挑战性。传统模型在预测能力和处理不断变化的裂变模式方面存在局限性。神经网络(NN)通过有效建模和预测与能量相关的裂变产率,为应对这些挑战提供了一个前景广阔的解决方案。混合物密度网络(MDN)可以从可用数据中学习,预测未知因素,并同时量化不确定性。高斯过程回归(GPR)等机器学习算法可以捕捉单裂变产率的分布,并生成高质量的样本。这些样本是 MDN 网络的宝贵输入。本研究介绍了一种 MDN 方法,用于评估与能量相关的裂变质量产率。结果表明,在确定 FPY 的分布位置和能量依赖性方面,尤其是在实验数据不完整的情况下,其准确性令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信