{"title":"Multi-omics revealed the mechanism of feed efficiency in sheep by the combined action of the host and rumen microbiota","authors":"Guangchen Zhou, Junda Li, Xuhui Liang, Bohua Yang, Ximeng He, Hongyu Tang, Hongran Guo, Gongwei Liu, Wenyuan Cui, Yulin Chen, Yuxin Yang","doi":"10.1016/j.aninu.2024.04.009","DOIUrl":null,"url":null,"abstract":"This study was conducted to investigate potential regulatory mechanisms of feed efficiency (FE) in sheep by linking rumen microbiota with its host by the multi-omics analysis. One hundred and ninety-eight hybrid female sheep (initial body weight = 30.88 ± 4.57 kg; 4-month-old) were selected as candidate sheep. Each test sheep was fed in an individual pen for 60 days, and the residual feed intake (RFI) was calculated. The ten candidate sheep with the highest RFI were divided into the Low-FE group, and the ten with the lowest RFI were divided into the High-FE group, all selected for sample collection. The RFI, average daily gain and average daily feed intake were highly significantly different between the two experimental groups ( < 0.05). Compared with Low-FE group, the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group ( < 0.01), but the acetate:propionate ratio in rumen significantly decreased in High-FE group ( = 0.034). Metagenomics revealed sp. and were key bacteria, and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group. The results of proteomics and section showed the rumen papilla length ( < 0.001) and expression of carbonic anhydrase and Na/K-ATPase were significantly higher in High-FE group ( < 0.05). On the other hand, the acetyl-CoA content significantly increased in the liver of High-FE group ( = 0.002). The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group ( < 0.01), but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated ( = 0.037). These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"7 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.04.009","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to investigate potential regulatory mechanisms of feed efficiency (FE) in sheep by linking rumen microbiota with its host by the multi-omics analysis. One hundred and ninety-eight hybrid female sheep (initial body weight = 30.88 ± 4.57 kg; 4-month-old) were selected as candidate sheep. Each test sheep was fed in an individual pen for 60 days, and the residual feed intake (RFI) was calculated. The ten candidate sheep with the highest RFI were divided into the Low-FE group, and the ten with the lowest RFI were divided into the High-FE group, all selected for sample collection. The RFI, average daily gain and average daily feed intake were highly significantly different between the two experimental groups ( < 0.05). Compared with Low-FE group, the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group ( < 0.01), but the acetate:propionate ratio in rumen significantly decreased in High-FE group ( = 0.034). Metagenomics revealed sp. and were key bacteria, and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group. The results of proteomics and section showed the rumen papilla length ( < 0.001) and expression of carbonic anhydrase and Na/K-ATPase were significantly higher in High-FE group ( < 0.05). On the other hand, the acetyl-CoA content significantly increased in the liver of High-FE group ( = 0.002). The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group ( < 0.01), but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated ( = 0.037). These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.