Numerical analysis of TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluid flow over a rotating disk with thermal radiation and Cattaneo–Christov heat flux effects
IF 2.1 4区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Nahid Fatima, Ali Basem, Umar Farooq, Muhammad Imran, Madeeha Tahir, Naim Ben Ali, Wajdi Rajhi, Hassan Waqas
{"title":"Numerical analysis of TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluid flow over a rotating disk with thermal radiation and Cattaneo–Christov heat flux effects","authors":"Nahid Fatima, Ali Basem, Umar Farooq, Muhammad Imran, Madeeha Tahir, Naim Ben Ali, Wajdi Rajhi, Hassan Waqas","doi":"10.1007/s11043-024-09732-1","DOIUrl":null,"url":null,"abstract":"<div><p>The study of nanofluids using a stretchy disc has lately gained importance in fluid mechanics. This work investigates the impacts of the Cattaneo-Christov model, heat radiation, and melting events on TiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/water and Ag–MoS<sub>2</sub>/water hybrid nanofluids over a disc. The results show that hybrid nanofluids greatly increase the thermal conductivity and heat transfer capabilities of base fluids. Water-based hybrid nanofluids are used in military applications such as solar thermal energy, heating pumps, heat exchanger devices, ships, air cleaners, the automotive industry, electric chillers, nuclear-powered systems, turbines, and equipment. To explain the flow of hybrid nanofluids, the two-dimensional nonlinear governing equations, which include the continuity, momentum, and heat transfer rate equations, are expressed in a non-dimensional form. The bvp4c solver firing technique in MATLAB is used to solve these non-dimensional equations and investigate the physical effects of various parameters on velocity and temperature profiles. Increasing the magnetic parameter and nanoparticle volume fraction substantially affects the velocity profile in opposing flow. Greater values of the thermal radiation and heat source-sink parameters result in a greater temperature profile. In addition, raising the thermal relaxation and melting parameters improves the temperature profile. The study’s findings may be utilized in various sectors, including drainage, chemical engineering, solar panels, solar absorption and filtration, groundwater hydrology, solar cells, and other sheet flow applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1313 - 1329"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09732-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The study of nanofluids using a stretchy disc has lately gained importance in fluid mechanics. This work investigates the impacts of the Cattaneo-Christov model, heat radiation, and melting events on TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluids over a disc. The results show that hybrid nanofluids greatly increase the thermal conductivity and heat transfer capabilities of base fluids. Water-based hybrid nanofluids are used in military applications such as solar thermal energy, heating pumps, heat exchanger devices, ships, air cleaners, the automotive industry, electric chillers, nuclear-powered systems, turbines, and equipment. To explain the flow of hybrid nanofluids, the two-dimensional nonlinear governing equations, which include the continuity, momentum, and heat transfer rate equations, are expressed in a non-dimensional form. The bvp4c solver firing technique in MATLAB is used to solve these non-dimensional equations and investigate the physical effects of various parameters on velocity and temperature profiles. Increasing the magnetic parameter and nanoparticle volume fraction substantially affects the velocity profile in opposing flow. Greater values of the thermal radiation and heat source-sink parameters result in a greater temperature profile. In addition, raising the thermal relaxation and melting parameters improves the temperature profile. The study’s findings may be utilized in various sectors, including drainage, chemical engineering, solar panels, solar absorption and filtration, groundwater hydrology, solar cells, and other sheet flow applications.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.