Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan, Fei Li
{"title":"Adaptive EC-GPR: a hybrid torque prediction model for mobile robots with unknown terrain disturbances","authors":"Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan, Fei Li","doi":"10.1108/ir-03-2024-0131","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-03-2024-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.
Design/methodology/approach
An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.
Findings
The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.
Originality/value
It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.