{"title":"Input–output waveform engineered inverse Class F power amplifiers with high efficiency","authors":"Zheming Zhu, Zhiqun Cheng, Minshi Jia, Kun Wang, Bingxin Li, Zhenghao Yang, Baoquan Zhong","doi":"10.1002/cta.4254","DOIUrl":null,"url":null,"abstract":"This paper studies the influence of the gate voltage of the power amplifier (PA) on the drain current and efficiency. This study proposes a theory of controlling input non‐linearity to improve the efficiency of PAs. The theoretical efficiency of the inverse Class F PA that controls the input nonlinearity is within the range of 77% to 97%. A new design method for the inverse Class F PA reconstructs the design of the load admittance space into a region instead of a point. To verify the validity of the proposed theory, an inverse Class F PA is designed and fabricated using a commercial 10 W GaN high electron mobility transistor (HEMT). Results of the measurement show a high drain efficiency (DE) of 78.5%, an output power of 41.6 dBm, and a large signal gain of 12.1 dB at 1.5 GHz. The overall PA's size is controlled at 80*50 .","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4254","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the influence of the gate voltage of the power amplifier (PA) on the drain current and efficiency. This study proposes a theory of controlling input non‐linearity to improve the efficiency of PAs. The theoretical efficiency of the inverse Class F PA that controls the input nonlinearity is within the range of 77% to 97%. A new design method for the inverse Class F PA reconstructs the design of the load admittance space into a region instead of a point. To verify the validity of the proposed theory, an inverse Class F PA is designed and fabricated using a commercial 10 W GaN high electron mobility transistor (HEMT). Results of the measurement show a high drain efficiency (DE) of 78.5%, an output power of 41.6 dBm, and a large signal gain of 12.1 dB at 1.5 GHz. The overall PA's size is controlled at 80*50 .
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.