{"title":"High‐frequency digitally adaptive pulse skipping modulated voltage‐mode controlled quadratic buck converter","authors":"Vijay Kumar Gupta, Bipin Chandra Mandi","doi":"10.1002/cta.4247","DOIUrl":null,"url":null,"abstract":"The quadratic buck converter is renowned for its steep step‐down capability. It encounters increased losses due to its high component count. In scenarios with light loads, switching losses become the dominant factor. Additionally, the presence of two right‐half plane zeros impairs transient response, even at high‐frequency switching operations. Incorporating this converter into the digital domain introduces an undesired phenomenon known as subharmonic oscillation, rendering the system unstable, albeit potentially mitigated over time—a drawback particularly undesirable for converters tasked with rapid load dynamics. This paper introduces an adaptive pulse skipping modulation scheme to control metal–oxide–semiconductor field‐effect transistor (MOSFET) switching actions, enhancing overall efficiency in discontinuous conduction mode. Furthermore, the effects of right half‐plane (RHP) zeros on stability are analyzed within these switching schemes. The proposed scheme is integrated with voltage‐mode control. Simulation and theoretical analyses are conducted to validate this converter. A flat efficiency of 89<jats:italic>%</jats:italic> to 86<jats:italic>%</jats:italic> for the load range of 25 to 700 mA is obtained, outperforming other existing schemes. The results demonstrate that the adaptive pulse modulation scheme effectively improves efficiency and stability in discontinuous conduction mode converters. This research provides valuable insights for optimizing power electronics systems with varying load dynamics.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4247","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The quadratic buck converter is renowned for its steep step‐down capability. It encounters increased losses due to its high component count. In scenarios with light loads, switching losses become the dominant factor. Additionally, the presence of two right‐half plane zeros impairs transient response, even at high‐frequency switching operations. Incorporating this converter into the digital domain introduces an undesired phenomenon known as subharmonic oscillation, rendering the system unstable, albeit potentially mitigated over time—a drawback particularly undesirable for converters tasked with rapid load dynamics. This paper introduces an adaptive pulse skipping modulation scheme to control metal–oxide–semiconductor field‐effect transistor (MOSFET) switching actions, enhancing overall efficiency in discontinuous conduction mode. Furthermore, the effects of right half‐plane (RHP) zeros on stability are analyzed within these switching schemes. The proposed scheme is integrated with voltage‐mode control. Simulation and theoretical analyses are conducted to validate this converter. A flat efficiency of 89% to 86% for the load range of 25 to 700 mA is obtained, outperforming other existing schemes. The results demonstrate that the adaptive pulse modulation scheme effectively improves efficiency and stability in discontinuous conduction mode converters. This research provides valuable insights for optimizing power electronics systems with varying load dynamics.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.