{"title":"A novel high step‐up, low switching voltage stress DC‐DC converter using leakage inductance for resonant boosting","authors":"Yin Chen, Haibin Li, Huaming Chen, Tao Jin","doi":"10.1002/cta.4236","DOIUrl":null,"url":null,"abstract":"A DC‐DC converter with high boost and low switching voltage stress is proposed by combining switched capacitor (SC) and coupled inductor (CL) techniques based on a conventional boost circuit. The design methodology of this converter includes substituting SC for a single switch in the boost converter, combining CL, and integrating a resonant boost circuit for absorbing leakage inductance. The improved power switch topology in this design has lower voltage stress, lower diode current stress, fewer total components, and common ground than other conventional DC‐DC converters. The operating modes and steady state analysis of the converter are provided in terms of leakage inductance utilization, with component stress derivation and theoretical efficiency analysis. In addition, comparisons with other dc‐dc converters are made. Subsequently, experiments were conducted on a 200 W DC‐DC converter prototype to verify the reliability of the converter.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4236","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A DC‐DC converter with high boost and low switching voltage stress is proposed by combining switched capacitor (SC) and coupled inductor (CL) techniques based on a conventional boost circuit. The design methodology of this converter includes substituting SC for a single switch in the boost converter, combining CL, and integrating a resonant boost circuit for absorbing leakage inductance. The improved power switch topology in this design has lower voltage stress, lower diode current stress, fewer total components, and common ground than other conventional DC‐DC converters. The operating modes and steady state analysis of the converter are provided in terms of leakage inductance utilization, with component stress derivation and theoretical efficiency analysis. In addition, comparisons with other dc‐dc converters are made. Subsequently, experiments were conducted on a 200 W DC‐DC converter prototype to verify the reliability of the converter.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.