{"title":"Mathematical modeling and stress‐aware stability analysis of a nonideal multiport Single Inductor DC–DC converter for renewable energy","authors":"Ashutosh Gupta, Dheeraj Joshi","doi":"10.1002/cta.4234","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel configuration for a multiport boost converter (MPBC) with a single inductor (SI), accounting for equivalent series resistances (ESRs) and minimizing input switching stress. The MPBC performance is evaluated and compared with other established topologies. The proposed MPBC interfaces two unidirectional input DC power ports and a rechargeable port for an energy storage element (ESE) with two output ports. The design integrates two renewable sources with the ESE as a third source. One output is for higher voltage, linked to a single‐phase inverter for AC loads. The other output is for lower DC voltage, used for DC loads. The configuration can be adjusted based on requirements. This converter has numerous applications in renewable energy systems, electric vehicles, and agriculture. The steady‐state and small signal modeling of MPBC has been done to derive the mathematical expressions for analyzing stability, stresses (both voltage and current), and performance considering ESRs. A 240 W, MPBC is fabricated along with improved switching strategies using DSP TMS320F28379D. Experimental and simulation results are compared to show the effectiveness of proposed scheme on stability, stresses, and efficient power transfer. Output power is regulated effectively by sharing the input power thereby reducing voltage stress on switches.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4234","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel configuration for a multiport boost converter (MPBC) with a single inductor (SI), accounting for equivalent series resistances (ESRs) and minimizing input switching stress. The MPBC performance is evaluated and compared with other established topologies. The proposed MPBC interfaces two unidirectional input DC power ports and a rechargeable port for an energy storage element (ESE) with two output ports. The design integrates two renewable sources with the ESE as a third source. One output is for higher voltage, linked to a single‐phase inverter for AC loads. The other output is for lower DC voltage, used for DC loads. The configuration can be adjusted based on requirements. This converter has numerous applications in renewable energy systems, electric vehicles, and agriculture. The steady‐state and small signal modeling of MPBC has been done to derive the mathematical expressions for analyzing stability, stresses (both voltage and current), and performance considering ESRs. A 240 W, MPBC is fabricated along with improved switching strategies using DSP TMS320F28379D. Experimental and simulation results are compared to show the effectiveness of proposed scheme on stability, stresses, and efficient power transfer. Output power is regulated effectively by sharing the input power thereby reducing voltage stress on switches.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.