Power stabilization control of wireless charging system based on LCL‐P compensation structure

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yonghui Yue, Zhenao Sun, Mingyu Lu
{"title":"Power stabilization control of wireless charging system based on LCL‐P compensation structure","authors":"Yonghui Yue, Zhenao Sun, Mingyu Lu","doi":"10.1002/cta.4250","DOIUrl":null,"url":null,"abstract":"To enhance the stabilizing function and boost the output power of the inductive coupling power transfer (ICPT) system, a power stabilization control method based on LCL‐P resonance compensation for a wireless energy transmission system is proposed. “L” represents inductance, “C” represents capacitance, “LCL” refers to the primary‐side compensation structure, and “P” indicates that the secondary side is compensated in parallel . Firstly, this paper synthesizes the modeling principle of the gyrator equivalent model of the resonant circuit and coupled inductor, graphically analyzes the resonant compensation structure, and derives the circuit characteristics of the LCL‐P compensation structure. Then, this paper proposes an improved control strategy for the Maximum Power Point Tracking (MPPT) algorithm to dynamically track the output power and thus obtain the optimal operating point through frequency conversion. Lastly, using MATLAB/Simulink software to build the simulation model of the wireless charging system through parameter design, the impact of the conventional DC/DC power control method is contrasted with the algorithmic control suggested in this paper. The results demonstrate that: the device can realize power transfer of 2.7 KW level, the energy transfer efficiency reaches more than 90%, the inverter realizes soft‐switching operation, and the improved MPPT algorithmic control strategy proposed in this paper is utilized to achieve better closed‐loop control of the system. The excellent characteristics of the LCL‐P compensation structure in high‐power transmission applications, as well as the correctness and feasibility of the control algorithm proposed in this paper, are demonstrated through simulation and practical experiments. This is a significant step towards improving the wide‐range adaptation of the wireless charging system, which is based on the LCL‐P resonance compensation to the changes in the load and coupling.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the stabilizing function and boost the output power of the inductive coupling power transfer (ICPT) system, a power stabilization control method based on LCL‐P resonance compensation for a wireless energy transmission system is proposed. “L” represents inductance, “C” represents capacitance, “LCL” refers to the primary‐side compensation structure, and “P” indicates that the secondary side is compensated in parallel . Firstly, this paper synthesizes the modeling principle of the gyrator equivalent model of the resonant circuit and coupled inductor, graphically analyzes the resonant compensation structure, and derives the circuit characteristics of the LCL‐P compensation structure. Then, this paper proposes an improved control strategy for the Maximum Power Point Tracking (MPPT) algorithm to dynamically track the output power and thus obtain the optimal operating point through frequency conversion. Lastly, using MATLAB/Simulink software to build the simulation model of the wireless charging system through parameter design, the impact of the conventional DC/DC power control method is contrasted with the algorithmic control suggested in this paper. The results demonstrate that: the device can realize power transfer of 2.7 KW level, the energy transfer efficiency reaches more than 90%, the inverter realizes soft‐switching operation, and the improved MPPT algorithmic control strategy proposed in this paper is utilized to achieve better closed‐loop control of the system. The excellent characteristics of the LCL‐P compensation structure in high‐power transmission applications, as well as the correctness and feasibility of the control algorithm proposed in this paper, are demonstrated through simulation and practical experiments. This is a significant step towards improving the wide‐range adaptation of the wireless charging system, which is based on the LCL‐P resonance compensation to the changes in the load and coupling.
基于 LCL-P 补偿结构的无线充电系统功率稳定控制
为了增强电感耦合功率传输(ICPT)系统的稳定功能并提高其输出功率,本文提出了一种基于 LCL-P 谐振补偿的无线能量传输系统功率稳定控制方法。L "表示电感,"C "表示电容,"LCL "表示一次侧补偿结构,"P "表示二次侧并联补偿。本文首先归纳了谐振电路和耦合电感的回旋器等效模型的建模原理,对谐振补偿结构进行了图解分析,并推导出 LCL-P 补偿结构的电路特性。然后,本文提出了最大功率点跟踪(MPPT)算法的改进控制策略,以动态跟踪输出功率,从而通过频率转换获得最佳工作点。最后,利用 MATLAB/Simulink 软件通过参数设计建立无线充电系统的仿真模型,对比传统 DC/DC 功率控制方法与本文提出的算法控制的影响。结果表明:该装置可实现 2.7 KW 级别的功率传输,能量传输效率达到 90% 以上,逆变器实现了软开关操作,并利用本文提出的改进型 MPPT 算法控制策略实现了更好的系统闭环控制。通过仿真和实际实验,证明了 LCL-P 补偿结构在大功率输电应用中的优异特性,以及本文提出的控制算法的正确性和可行性。这对于提高基于 LCL-P 共振补偿的无线充电系统对负载和耦合变化的大范围适应性迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信