A Fractional‐Order Method of Frequency Splitting and Bifurcation Suppression for Wireless Power Transfer Systems

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xujian Shu, Xueqi Zhang, Yanwei Jiang, Bo Zhang
{"title":"A Fractional‐Order Method of Frequency Splitting and Bifurcation Suppression for Wireless Power Transfer Systems","authors":"Xujian Shu, Xueqi Zhang, Yanwei Jiang, Bo Zhang","doi":"10.1002/cta.4262","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) is an emerging technology that enables the wireless transfer of electrical energy from power supplies to electrical equipment. It has been widely used in electric vehicles, mobile phones, household appliances, medical devices, and other fields. However, the frequency splitting and bifurcation phenomena existing in WPT systems are the fundamental obstacles and challenges that affect the effective operation of WPT systems. In this paper, a method based on the fractional‐order circuit is proposed to simultaneously suppress the frequency splitting and bifurcation phenomena by changing the order of fractional‐order capacitor. By replacing the compensation capacitor in the transmitter of the traditional WPT system with a fractional‐order capacitor, a fractional‐order WPT system is formed. Then, using fractional calculus and circuit theory, the mathematical model of the proposed WPT system containing a fractional‐order capacitor is established, and the frequency splitting and bifurcation phenomena are analyzed. The theoretical results show that the frequency splitting and bifurcation phenomena are suppressed only by adjusting the order of fractional‐order capacitor, and the output power of the original resonant frequency is improved. Finally, the experimental prototype is implemented to validate the theoretical results.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4262","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless power transfer (WPT) is an emerging technology that enables the wireless transfer of electrical energy from power supplies to electrical equipment. It has been widely used in electric vehicles, mobile phones, household appliances, medical devices, and other fields. However, the frequency splitting and bifurcation phenomena existing in WPT systems are the fundamental obstacles and challenges that affect the effective operation of WPT systems. In this paper, a method based on the fractional‐order circuit is proposed to simultaneously suppress the frequency splitting and bifurcation phenomena by changing the order of fractional‐order capacitor. By replacing the compensation capacitor in the transmitter of the traditional WPT system with a fractional‐order capacitor, a fractional‐order WPT system is formed. Then, using fractional calculus and circuit theory, the mathematical model of the proposed WPT system containing a fractional‐order capacitor is established, and the frequency splitting and bifurcation phenomena are analyzed. The theoretical results show that the frequency splitting and bifurcation phenomena are suppressed only by adjusting the order of fractional‐order capacitor, and the output power of the original resonant frequency is improved. Finally, the experimental prototype is implemented to validate the theoretical results.
一种用于无线电力传输系统的分频和分岔抑制的分数阶方法
无线电力传输(WPT)是一种新兴技术,可实现从电源到电气设备的电能无线传输。它已被广泛应用于电动汽车、移动电话、家用电器、医疗设备等领域。然而,WPT 系统中存在的频率分裂和分叉现象是影响 WPT 系统有效运行的根本障碍和挑战。本文提出了一种基于分数阶电路的方法,通过改变分数阶电容器的阶数,同时抑制频率分裂和分岔现象。将传统 WPT 系统发射器中的补偿电容器换成分数阶电容器,就形成了分数阶 WPT 系统。然后,利用分数微积分和电路理论,建立了包含分数阶电容器的拟议 WPT 系统的数学模型,并分析了频率分裂和分岔现象。理论结果表明,只有通过调整分数阶电容器的阶数,才能抑制频率分裂和分岔现象,并提高原谐振频率的输出功率。最后,通过实验原型验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信