Syed Enamur Rahaman, Santanu Dwari, Mirnal Kanti Mandal
{"title":"Implementation of Electromagnetic Theory: Improved Analysis and Design for Class F Power Amplifier","authors":"Syed Enamur Rahaman, Santanu Dwari, Mirnal Kanti Mandal","doi":"10.1002/cta.4268","DOIUrl":null,"url":null,"abstract":"The general electromagnetic (EM) theory has not yet been applied to the analysis of Class F (CF) power amplifier (PA). In this paper, an alternative approach for CF PA is presented based on the EM theory. Theoretical analysis shows that the CF PA can be divided into two broad categories, forward voltage gain, and reflected voltage gain PA. The existing CF PA belongs to the reflected voltage gain PA. Even though both the CF PAs have the same voltage gain, the PA with forward voltage gain provides higher fundamental power <jats:italic>P</jats:italic><jats:sub><jats:italic>s</jats:italic>,1<jats:italic>@F</jats:italic></jats:sub> and drain efficiency <jats:italic>PAE</jats:italic><jats:sub><jats:italic>@F</jats:italic></jats:sub> than that CF PA with reflected voltage gain and Class B PA. This important conclusion is obtained as a result of this analysis, which cannot be explained by available theory in the literature. The theoretical analysis is validated at 2.2 GHz by fabrication and measurements. According to the results, <jats:italic>P</jats:italic><jats:sub><jats:italic>s</jats:italic>,1<jats:italic>@B</jats:italic></jats:sub> = 31.8 dBm and <jats:italic>PAE</jats:italic><jats:sub><jats:italic>@B</jats:italic></jats:sub> = 53.27% in Class B PA. In CF PA with reflected voltage gain, <jats:italic>P</jats:italic><jats:sub><jats:italic>s</jats:italic>,1<jats:italic>@F</jats:italic></jats:sub> = 30.20 dBm and <jats:italic>PAE</jats:italic><jats:sub><jats:italic>@F</jats:italic></jats:sub> = 48.6%. Both cases have lower power and PAE as compared to new category of CF PA. This new CF PA with forward voltage gain has, <jats:italic>P</jats:italic><jats:sub><jats:italic>s</jats:italic>,1<jats:italic>@F</jats:italic></jats:sub> = 33.04 dBm and <jats:italic>PAE</jats:italic><jats:sub><jats:italic>@F</jats:italic></jats:sub> = 63.7%.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The general electromagnetic (EM) theory has not yet been applied to the analysis of Class F (CF) power amplifier (PA). In this paper, an alternative approach for CF PA is presented based on the EM theory. Theoretical analysis shows that the CF PA can be divided into two broad categories, forward voltage gain, and reflected voltage gain PA. The existing CF PA belongs to the reflected voltage gain PA. Even though both the CF PAs have the same voltage gain, the PA with forward voltage gain provides higher fundamental power Ps,1@F and drain efficiency PAE@F than that CF PA with reflected voltage gain and Class B PA. This important conclusion is obtained as a result of this analysis, which cannot be explained by available theory in the literature. The theoretical analysis is validated at 2.2 GHz by fabrication and measurements. According to the results, Ps,1@B = 31.8 dBm and PAE@B = 53.27% in Class B PA. In CF PA with reflected voltage gain, Ps,1@F = 30.20 dBm and PAE@F = 48.6%. Both cases have lower power and PAE as compared to new category of CF PA. This new CF PA with forward voltage gain has, Ps,1@F = 33.04 dBm and PAE@F = 63.7%.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.