Musa N. Hamza;Mohammad Alibakhshikenari;Bal Virdee;Muhamad A. Hamad;Salahuddin Khan;Slawomir Koziel;Ernesto Limiti
{"title":"Terahertz Dual-Band Metamaterial Biosensor for Cervical-Cancer Diagnostics","authors":"Musa N. Hamza;Mohammad Alibakhshikenari;Bal Virdee;Muhamad A. Hamad;Salahuddin Khan;Slawomir Koziel;Ernesto Limiti","doi":"10.1109/JPHOT.2024.3458455","DOIUrl":null,"url":null,"abstract":"This study highlights the potential of employing terahertz metamaterial structures as dual-band biosensors for the early detection of cancerous biological tissue. The fundamental principle leveraged here is the alteration of the effective dielectric constant of biological tissue by cancerous cells. The change in the dielectric constant, in turn, induces a shift in the resonance frequency of the metamaterial sensor. One notable advantage of the terahertz metamaterial sensor is its relatively compact size compared to other sensor types, as its dimensions are independent of the wavelength. This property translates into a requirement for a much smaller biopsy sample, facilitating less invasive testing procedures. Beyond the size advantage, the proposed biosensor demonstrates efficacy in detecting abnormalities within biological tissue.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-11"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675514/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study highlights the potential of employing terahertz metamaterial structures as dual-band biosensors for the early detection of cancerous biological tissue. The fundamental principle leveraged here is the alteration of the effective dielectric constant of biological tissue by cancerous cells. The change in the dielectric constant, in turn, induces a shift in the resonance frequency of the metamaterial sensor. One notable advantage of the terahertz metamaterial sensor is its relatively compact size compared to other sensor types, as its dimensions are independent of the wavelength. This property translates into a requirement for a much smaller biopsy sample, facilitating less invasive testing procedures. Beyond the size advantage, the proposed biosensor demonstrates efficacy in detecting abnormalities within biological tissue.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.