CLMTR: a generic framework for contrastive multi-modal trajectory representation learning

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Anqi Liang, Bin Yao, Jiong Xie, Wenli Zheng, Yanyan Shen, Qiqi Ge
{"title":"CLMTR: a generic framework for contrastive multi-modal trajectory representation learning","authors":"Anqi Liang, Bin Yao, Jiong Xie, Wenli Zheng, Yanyan Shen, Qiqi Ge","doi":"10.1007/s10707-024-00528-6","DOIUrl":null,"url":null,"abstract":"<p>Multi-modal trajectory representation learning aims to convert raw trajectories into low-dimensional embeddings to facilitate downstream trajectory analysis tasks. However, existing methods focus on spatio-temporal trajectories and often neglect additional modal features such as textual or imagery data. Moreover, these methods do not fully consider the correlations among different modal features and the relationships among trajectories, thus hindering the generation of generic and semantically enriched representations. To address these limitations, we propose a generic <u>C</u>ontrastive <u>L</u>earning-based <u>M</u>ulti-modal <u>T</u>rajectory <u>R</u>epresentation framework, termed CLMTR. Specifically, we incorporate intra- and inter-trajectory contrastive learning components to capture the correlations among diverse modal features and the intricate relationships among trajectories, obtaining generic and semantically enriched trajectory representations. We develop multi-modal feature embedding and attention-based fusion approaches to capture the multi-modal characteristics and adaptively obtain the unified embeddings. Experimental results on two real-world datasets demonstrate the superior performance of CLMTR over state-of-the-art methods in three downstream tasks.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00528-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-modal trajectory representation learning aims to convert raw trajectories into low-dimensional embeddings to facilitate downstream trajectory analysis tasks. However, existing methods focus on spatio-temporal trajectories and often neglect additional modal features such as textual or imagery data. Moreover, these methods do not fully consider the correlations among different modal features and the relationships among trajectories, thus hindering the generation of generic and semantically enriched representations. To address these limitations, we propose a generic Contrastive Learning-based Multi-modal Trajectory Representation framework, termed CLMTR. Specifically, we incorporate intra- and inter-trajectory contrastive learning components to capture the correlations among diverse modal features and the intricate relationships among trajectories, obtaining generic and semantically enriched trajectory representations. We develop multi-modal feature embedding and attention-based fusion approaches to capture the multi-modal characteristics and adaptively obtain the unified embeddings. Experimental results on two real-world datasets demonstrate the superior performance of CLMTR over state-of-the-art methods in three downstream tasks.

Abstract Image

CLMTR:对比多模态轨迹表征学习的通用框架
多模态轨迹表征学习旨在将原始轨迹转换为低维嵌入,以促进下游轨迹分析任务。然而,现有方法只关注时空轨迹,往往忽略了文本或图像数据等其他模态特征。此外,这些方法没有充分考虑不同模态特征之间的相关性以及轨迹之间的关系,从而阻碍了通用的、语义丰富的表征的生成。为了解决这些局限性,我们提出了一种通用的基于对比学习的多模态轨迹表示框架,称为 CLMTR。具体来说,我们结合了轨迹内和轨迹间对比学习组件,以捕捉不同模态特征之间的相关性以及轨迹之间错综复杂的关系,从而获得通用的、语义丰富的轨迹表征。我们开发了多模态特征嵌入和基于注意力的融合方法,以捕捉多模态特征并自适应地获得统一的嵌入。在两个真实世界数据集上的实验结果表明,在三个下游任务中,CLMTR 的性能优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoinformatica
Geoinformatica 地学-计算机:信息系统
CiteScore
5.60
自引率
10.00%
发文量
25
审稿时长
6 months
期刊介绍: GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds. This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信