Temperature induced A1 to B2 structural and magnetic transition in FeRh thin film

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
D G Merkel, M A Gracheva, G Z Radnóczi, G Hegedűs, D L Nagy, Z E Horváth, A Lengyel
{"title":"Temperature induced A1 to B2 structural and magnetic transition in FeRh thin film","authors":"D G Merkel, M A Gracheva, G Z Radnóczi, G Hegedűs, D L Nagy, Z E Horváth, A Lengyel","doi":"10.1088/2053-1591/ad6f71","DOIUrl":null,"url":null,"abstract":"The Fe-Rh system offers a diverse range of magnetic phases, making it promising for energy-efficient magnetic devices. A periodic, chemically homogeneous, isotope-periodic <sup>n</sup>FeRh/<sup>57</sup>FeRh multilayer system was deposited on a MgO(100) substrate via molecular beam epitaxy, and annealed at various temperatures and durations. To gain deeper insights into the A1 to B2 structural and magnetic transitions, non-destructive techniques such as x-ray diffraction, conversion electron Mössbauer spectroscopy, and neutron reflectometry were employed. The qualitative and quantitative analysis revealed insights into the underlying mechanisms of the transformation from the A1 phase to the B2 phase were described, including the variation of the lattice parameters, grain sizes and hyperfine parameters. Neutron reflectometry revealed no significant long-range diffusion during the phase transition, suggesting a local interchange of neighbouring atoms.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad6f71","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Fe-Rh system offers a diverse range of magnetic phases, making it promising for energy-efficient magnetic devices. A periodic, chemically homogeneous, isotope-periodic nFeRh/57FeRh multilayer system was deposited on a MgO(100) substrate via molecular beam epitaxy, and annealed at various temperatures and durations. To gain deeper insights into the A1 to B2 structural and magnetic transitions, non-destructive techniques such as x-ray diffraction, conversion electron Mössbauer spectroscopy, and neutron reflectometry were employed. The qualitative and quantitative analysis revealed insights into the underlying mechanisms of the transformation from the A1 phase to the B2 phase were described, including the variation of the lattice parameters, grain sizes and hyperfine parameters. Neutron reflectometry revealed no significant long-range diffusion during the phase transition, suggesting a local interchange of neighbouring atoms.
温度诱导的 FeRh 薄膜从 A1 到 B2 的结构和磁性转变
Fe-Rh体系具有多种磁性相,因此很有希望用于高能效磁性器件。通过分子束外延技术在氧化镁(100)基底上沉积了周期性、化学均匀、同位素周期性的 nFeRh/57FeRh 多层系统,并在不同温度和持续时间下进行了退火处理。为了深入了解 A1 到 B2 的结构和磁性转变,采用了 X 射线衍射、转换电子莫斯鲍尔光谱和中子反射测量等非破坏性技术。定性和定量分析揭示了从 A1 相到 B2 相转变的内在机制,包括晶格参数、晶粒尺寸和超细参数的变化。中子反射测量显示,在相变过程中没有明显的长程扩散,这表明相邻原子之间存在局部交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信